Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(28): 17885-93, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27322508

ABSTRACT

Inspired by natural examples of swelling-actuated self-folding, we utilize photodegradable hydrogels as dynamically tunable, shape-changing scaffolds for culturing cells. Poly(ethylene glycol) diacrylate-based thin films incorporating ortho-nitrobenzyl (o-NB) moieties are transformed from flat 2D sheets to folded 3D structures by exposure to 365 nm UV light. As the UV light is attenuated through the thickness of the gel, a cross-link density gradient is formed. This gradient gives rise to differential swelling and a bending moment, resulting in gel folding. By tuning the UV light dose and the molar ratio of photodegradable to nondegradable species, both the initial degree of folding and the relaxation of tubular structures can be accurately controlled. These self-folding photodegradable gels were further functionalized with a cell-adhesive RGD peptide for both seeding and encapsulation of C2C12 mouse myoblasts. Light-induced folding of RGD functionalized hydrogels from flat sheets to tubular structures was demonstrated 1 or 3 days after C2C12 seeding. The C2C12s remained adhered on the inner walls of folded tubes for up to 6 days after folding. The minimum measured diameter of a tubular structure containing C2C12s was 1 mm, which is similar to the size of muscle fascicles. Furthermore, the viability of encapsulated C2C12s was not adversely affected by the UV light-induced folding. This is the first account of a self-folding material system that allows 2D-3D shape change in the presence of both seeded and encapsulated cells at a user-directed time point of choice.


Subject(s)
Cell Culture Techniques/methods , Hydrogels/chemistry , Hydrogels/radiation effects , Animals , Cell Culture Techniques/instrumentation , Dose-Response Relationship, Radiation , Mice , Myoblasts/cytology , Optical Imaging , Photolysis , Ultraviolet Rays
2.
Langmuir ; 30(48): 14555-65, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25375206

ABSTRACT

In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for hESC-RPE cells.


Subject(s)
Embryonic Stem Cells/cytology , Epithelial Cells/cytology , Glass/chemistry , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Embryonic Stem Cells/drug effects , Epithelial Cells/drug effects , Humans , Photoelectron Spectroscopy , Propylamines , Silanes/chemistry , Surface Properties
3.
Mater Sci Eng C Mater Biol Appl ; 43: 280-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25175215

ABSTRACT

The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication.


Subject(s)
Amino Acids/chemistry , Hydrogels , Polyethylene Glycols/chemistry , Polymerization , Lasers , Microscopy, Electron, Scanning , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...