Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(13): 8941-8956, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257937

ABSTRACT

Extending assessments of climate change-induced range shifts via correlative species distribution models by including species traits is crucial for conservation planning. However, comprehensive assessments of future distribution scenarios incorporating responses of biotic factors are poorly investigated. Therefore, the aim of our study was to extend the understanding about the combined usage of species traits data and species distribution models for different life stages and distribution scenarios. We combine global model predictions for the 2050s and thermal performances of Salmo trutta and Salmo salar under consideration of different life stages (adults, juveniles, eggs), timeframes (monthly, seasonally, yearly), and dispersal scenarios (no dispersal, free dispersal, restricted dispersal). We demonstrate that thermal performances of different life stages will either increase or decrease for certain time periods. Model predictions and thermal performances imply range declines and poleward shifts. Dispersal to suitable habitats will be an important factor mitigating warming effects; however, dams may block paths to areas linked to high performances. Our results emphasize enhanced inclusion of critical periods for species and proper dispersal solutions in conservation planning.

2.
Ecol Evol ; 9(1): 111-124, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30680100

ABSTRACT

The distribution of a species along a thermal gradient is commonly approximated by a unimodal response curve, with a characteristic single optimum near the temperature where a species is most likely to be found, and a decreasing probability of occurrence away from the optimum. We aimed at identifying thermal response curves (TRCs) of European freshwater species and evaluating the potential impact of climate warming across species, taxonomic groups, and latitude. We first applied generalized additive models using catchment-scale global data on distribution ranges of 577 freshwater species native to Europe and four different temperature variables (the current annual mean air/water temperature and the maximum air/water temperature of the warmest month) to describe species TRCs. We then classified TRCs into one of eight curve types and identified spatial patterns in thermal responses. Finally, we integrated empirical TRCs and the projected geographic distribution of climate warming to evaluate the effect of rising temperatures on species' distributions. For the different temperature variables, 390-463 of 577 species (67.6%-80.2%) were characterized by a unimodal TRC. The number of species with a unimodal TRC decreased from central toward northern and southern Europe. Warming tolerance (WT = maximum temperature of occurrence-preferred temperature) was higher at higher latitudes. Preferred temperature of many species is already exceeded. Rising temperatures will affect most Mediterranean species. We demonstrated that freshwater species' occurrence probabilities are most frequently unimodal. The impact of the global climate warming on species distributions is species and latitude dependent. Among the studied taxonomic groups, rising temperatures will be most detrimental to fish. Our findings support the efforts of catchment-based freshwater management and conservation in the face of global warming.

3.
Glob Chang Biol ; 23(9): 3567-3580, 2017 09.
Article in English | MEDLINE | ID: mdl-28186382

ABSTRACT

Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies.


Subject(s)
Climate Change , Conservation of Natural Resources , Fresh Water , Animals , Biodiversity , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...