Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 90(Pt 8): 2033-2039, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19386783

ABSTRACT

Previous experiments established that when the unicellular green alga Chlorella NC64A is inoculated with two viruses, usually only one virus replicates in a single cell. That is, the viruses mutually exclude one another. In the current study, we explore the possibility that virus-induced host membrane depolarization, at least partially caused by a virus-encoded K(+) channel (Kcv), is involved in this mutual exclusion. Two chlorella viruses, PBCV-1 and NY-2A, were chosen for the study because (i) they can be distinguished by real-time PCR and (ii) they exhibit differential sensitivity to Cs(+), a well-known K(+) channel blocker. PBCV-1-induced host membrane depolarization, Kcv channel activity and plaque formation are only slightly affected by Cs(+), whereas all three NY-2A-induced events are strongly inhibited by Cs(+). The addition of one virus 5-15 min before the other results primarily in replication of the first virus. However, if virus NY-2A-induced membrane depolarization of the host is blocked by Cs(+), PBCV-1 is not excluded. We conclude that virus-induced membrane depolarization is at least partially responsible for the exclusion phenomenon.


Subject(s)
Cell Membrane/physiology , Chlorella/virology , Membrane Potentials , Phycodnaviridae/physiology , Phycodnaviridae/growth & development , Potassium Channel Blockers/pharmacology , Potassium Channels/metabolism , Viral Plaque Assay , Viral Proteins/metabolism
2.
J Virol ; 80(5): 2437-44, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16474150

ABSTRACT

Previous studies have established that chlorella viruses encode K(+) channels with different structural and functional properties. In the current study, we exploit the different sensitivities of these channels to Cs(+) to determine if the membrane depolarization observed during virus infection is caused by the activities of these channels. Infection of Chlorella NC64A with four viruses caused rapid membrane depolarization of similar amplitudes, but with different kinetics. Depolarization was fastest after infection with virus SC-1A (half time [t(1/2)], about 9 min) and slowest with virus NY-2A (t(1/2), about 12 min). Cs(+) inhibited membrane depolarization only in viruses that encode a Cs(+)-sensitive K(+) channel. Collectively, the results indicate that membrane depolarization is an early event in chlorella virus-host interactions and that it is correlated with viral-channel activity. This suggestion was supported by investigations of thin sections of Chlorella cells, which show that channel blockers inhibit virus DNA release into the host cell. Together, the data indicate that the channel is probably packaged in the virion, presumably in its internal membrane. We hypothesize that fusion of the virus internal membrane with the host plasma membrane results in an increase in K(+) conductance and membrane depolarization; this depolarization lowers the energy barrier for DNA release into the host.


Subject(s)
Cell Membrane/physiology , Chlorella/physiology , Chlorella/virology , Phycodnaviridae/physiology , Potassium Channels/physiology , DNA, Viral/metabolism , Kinetics , Membrane Potentials , Potassium Channel Blockers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...