Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Malar J ; 21(1): 83, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279140

ABSTRACT

BACKGROUND: Resistance to anti-malarials is a serious threat to the efforts to control and eliminate malaria. Surveillance based on simple field protocols with centralized testing to detect molecular markers associated with anti-malarial drug resistance can be used to identify locations where further investigations are needed. METHODS: Dried blood spots were collected from 398 patients (age range 5-59 years, 99% male) with Plasmodium falciparum infections detected using rapid diagnostic tests over two rounds of sample collection conducted in 2016 and 2017 in Komé, South-West Chad. Specimens were genotyped using amplicon sequencing or qPCR for validated markers of anti-malarial resistance including partner drugs used in artemisinin-based combination therapy (ACT). RESULTS: No mutations in the pfk13 gene known to be associated with artemisinin resistance were found but a high proportion of parasites carried other mutations, specifically K189T (190/349, 54.4%, 95%CI 49.0-59.8%). Of 331 specimens successfully genotyped for pfmdr1 and pfcrt, 52% (95%CI 46.4-57.5%) carried the NFD-K haplotype, known to be associated with reduced susceptibility to lumefantrine. Only 20 of 336 (6.0%, 95%CI 3.7-9.0%) had parasites with the pfmdr1-N86Y polymorphism associated with increased treatment failures with amodiaquine. Nearly all parasites carried at least one mutation in pfdhfr and/or pfdhps genes but 'sextuple' mutations in pfdhfr-pfdhps including pfdhps -A581G were rare (8/336 overall, 2.4%, 95%CI 1.2-4.6%). Only one specimen containing parasites with pfmdr1 gene amplification was detected. CONCLUSIONS: These results provide information on the likely high efficacy of artemisinin-based combinations commonly used in Chad, but suggest decreasing levels of sensitivity to lumefantrine and high levels of resistance to sulfadoxine-pyrimethamine used for seasonal malaria chemoprevention and intermittent preventive therapy in pregnancy. A majority of parasites had mutations in the pfk13 gene, none of which are known to be associated with artemisinin resistance. A therapeutic efficacy study needs to be conducted to confirm the efficacy of artemether-lumefantrine.


Subject(s)
Antimalarials , Plasmodium falciparum , Adolescent , Adult , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether , Artemether, Lumefantrine Drug Combination , Chad , Child , Child, Preschool , Drug Resistance/genetics , Female , Humans , Male , Middle Aged , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Young Adult
2.
Infect Dis Poverty ; 8(1): 100, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31796068

ABSTRACT

BACKGROUND: The Sahel region of Chad Republic is a prime candidate for malaria pre-elimination. To facilitate pre-elimination efforts in this region, two populations of Anopheles coluzzii from Central Chad Republic were characterized, their insecticide resistance profile and the possible molecular mechanisms driving the resistance in the field investigated. METHODS: Bloodfed female Anopheles gambiae s.l. resting indoor, were collected at N'djamena and Massakory, Chad in 2018 and characterized for species composition, and infection rate was determined using the TaqMan assay. Susceptibility to various insecticides was assessed using WHO tube bioassays. Cone bioassays were conducted using various long-lasting insecticidal nets (LLINs). Results were analysed using Chi Square test. Knockdown resistance (kdr) and ace-1 markers were investigated by TaqMan genotyping. RESULTS: Anopheles coluzzii was the major vector found in N'djamena (100%) and Massakory (~ 94%). No Plasmodium was found in 147 bloodfed F0 An. coluzzii (82 from N'djamena and 65 from Massakory). High intensity pyrethroid resistance was observed with mortalities of < 2% for permethrin, deltamethrin and etofenprox, and with < 50% and < 60% dead following exposure to 10× diagnostic doses of deltamethrin and permethrin, respectively. For both sites, < 10% mortalities were observed with DDT. Synergist bioassays with piperonylbutoxide significantly recovered pyrethroid susceptibility in Massakory populations, implicating CYP450s (mortality = 13.6% for permethrin, χ2 = 22.8, df = 1, P = 0.0006; mortality = 13.0% for deltamethrin, χ2 = 8.8, df = 1, P < 0.00031). Cone-bioassays established complete loss of efficacy of the pyrethroid-based LLINs; and a 100% recovery of susceptibility following exposure to the roof of PermaNet®3.0, containing piperonylbutoxide. Both populations were susceptible to malathion, but high bendiocarb resistance was observed in Massakory population. The absence of ace-1 mutation points to the role of metabolic resistance in the bendiocarb resistance. Both 1014F and 1014S mutations were found in both populations at around 60% and < 20% respectively. Sequencing of intron-1 of the voltage-gated sodium channel revealed a low genetic diversity suggesting reduced polymorphism. CONCLUSIONS: Multiple resistance in An. coluzzii populations from Chad highlight challenges associated with deployment of LLINs and indoor residual spraying (IRS) in the Sahel of this country. The pyrethroid-synergists LLINs (e.g. PermaNet®3.0) and organophosphate-based IRS maybe the alternatives for malaria control in this region.


Subject(s)
Anopheles/physiology , Insecticide Resistance/genetics , Insecticides/pharmacology , Malaria/transmission , Mosquito Vectors/physiology , Animals , Anopheles/drug effects , Anopheles/genetics , Chad , Female , Mosquito Vectors/drug effects , Mosquito Vectors/genetics
3.
Parasit Vectors ; 9: 465, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27553245

ABSTRACT

BACKGROUND: The development and spread of insecticide resistance among malaria vectors, is a threat to the continued effectiveness of interventions to control and eliminate the disease. The status of insecticide resistance among malaria vector populations at two sites in Kome, southern Chad, was evaluated to inform decisions on vector control. METHODS: Mosquito larvae were collected from temporary rain-filled and semi-permanent breeding places at two sites and reared in a laboratory. Emerging Anopheles gambiae (senso lato) (s.l.) adults were morphologically identified, sorted and evaluated for susceptibility to WHOPES recommended insecticides. Standardized biomolecular and biochemical methods were used to determine sibling species and molecular forms: knockdown resistant alleles (kdr-w) for pyrethroids and DDT; acetylcholinesterase-1 resistant alleles for organophosphate and carbamates; biochemical resistance through measurement of the levels of non-specific esterase (α and ß), oxidase and glutathione-s-transferases activities. RESULTS: Anopheles gambiae (s.l.) was the main vector group in the two study sites and comprised of Anopheles gambiae (senso stricto) (s.s.) and An. arabiensis, respectively, at 71 and 29 % in Site A, and 60 and 40 % at Site B. Anopheles gambiae (s.s.) was composed of M (Anopheles coluzzii) and S [nominotypical An. gambiae (s.s.)] molecular forms. Anopheles coluzzii accounted for over 98 % of the sub-group. There was extensive phenotypic resistance to pyrethroids, DDT and carbamates, but full susceptibility to organophosphates. Population-wide frequency of knockdown resistant allele in An. gambiae (s.l.) was 43 homozygous (RR), 19 heterozygous (RS) and 38 % homozygous susceptible (SS). When segregated by species and molecular forms, An. coluzzii had the highest kdr-w frequency of 37.4 homozygous resistant alleles, and 17.5 % heterozygous, with 8.3 % homozygote susceptible alleles. An. gambiae (s.s.) had 1 % homozygous resistant allele. Levels of esterase, oxidase and glutathione-s-transferases were not significantly different compared to fully susceptible laboratory raised An. gambiae (s.s.) Kisumu reference, although few individuals showed significant elevation of esterases (> 0.04 µg/protein), indicating a likely start of biochemical enzyme resistance. CONCLUSIONS: There is an urgent need for action to stop and reverse significant insecticide resistance in the area. A comprehensive entomological surveillance and monitoring program is needed to understand the full extent of resistance to enable realistic insecticide resistance management strategy, and also to track future changes in the vector populations.


Subject(s)
Anopheles/drug effects , Insect Vectors/parasitology , Insecticide Resistance/genetics , Malaria/prevention & control , Mosquito Control/methods , Animals , Anopheles/genetics , Chad/epidemiology , Insect Vectors/classification , Malaria/epidemiology , Population Surveillance
4.
PLoS One ; 11(5): e0155746, 2016.
Article in English | MEDLINE | ID: mdl-27228026

ABSTRACT

BACKGROUND: A longitudinal Anopheles gambiae s.l. insecticide resistance monitoring programme was established in four sentinel sites in Chad 2008-2010. When this programme ended, only sporadic bioassays were performed in a small number of sites. METHODS: WHO diagnostic dose assays were used to measure the prevalence of insecticide resistance to 0.1% bendiocarb, 4% DDT, 0.05% deltamethrin, 1% fenitrothion, and 0.75% permethrin in the main malaria vectors at the beginning and end of the malaria transmission season for three years 2008-2010, with subsequent collections in 2011 and 2014. Species and molecular identification of An. gambiae M and S forms and kdr genotyping was performed using PCR-RLFP; circumsporozoite status was assessed using ELISA. RESULTS: Between 2008 and 2010, significant changes in insecticide resistance profiles to deltamethrin and permethrin were seen in 2 of the sites. No significant changes were seen in resistance to DDT in any site during the study period. Testing performed after the period of routine monitoring had ended showed dramatic increases to DDT and pyrethroid resistance in 3 sites. No resistance to organophosphate or carbamate insecticides was detected. An. arabiensis was the predominate member of the An. gambiae complex in all 4 sites; adult collections showed temporal variation in species composition in only 1 site. Kdr analysis identified both 1014F and 1014S alleles in An. gambiae S only. Circumsporozoite analysis showed the highest vector infection rates were present in Donia, a site with extensive use of agricultural insecticides. CONCLUSIONS: During the monitoring gap of four years, significant changes occurred in resistance prevalence in 3 of the 4 sites (p = <0.001), endangering the efficacy of currently implemented malaria control interventions. Significant changes in insecticide resistance profiles and a lack of kdr resistance alleles in adult populations highlight the urgent need for comprehensive entomological monitoring to be implemented and sustained in country.


Subject(s)
Anopheles/drug effects , Disease Vectors , Insecticide Resistance , Insecticides/pharmacology , Malaria/diagnosis , Malaria/drug therapy , Animals , Anopheles/genetics , Insect Proteins/genetics , Longitudinal Studies , Malaria/mortality
5.
Malar J ; 8: 299, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-20015411

ABSTRACT

BACKGROUND: Insecticide resistance in malaria vectors is a growing concern in many countries which requires immediate attention because of the limited chemical arsenal available for vector control. The current extent and distribution of this resistance in many parts of the continent is unknown and yet such information is essential for the planning of effective malaria control interventions. METHODS: In 2008, a network was established, with financial support from WHO/TDR, to investigate the extent of insecticide resistance in malaria vectors in five African countries. Here, the results of bioassays on Anopheles gambiae sensu lato from two rounds of monitoring from 12 sentinel sites in three of the partner countries are reported. RESULTS: Resistance is very heterogeneous even over relatively small distances. Furthermore, in some sites, large differences in mortality rates were observed during the course of the malaria transmission season. Using WHO diagnostic doses, all populations from Burkina Faso and Chad and two of the four populations from Sudan were classified as resistant to permethrin and/or deltamethrin. Very high frequencies of DDT resistance were found in urban areas in Burkina Faso and Sudan and in a cotton-growing district in Chad. In areas where both An. gambiae s.s. and Anopheles arabiensis were present, resistance was found in both species, although generally at a higher frequency in An gambiae s.s. Anopheles gambiae s.l. remains largely susceptible to the organophosphate fenitrothion and the carbamate bendiocarb in the majority of the sentinel sites with the exception of two sites in Burkina Faso. In the cotton-growing region of Soumousso in Burkina Faso, the vector population is resistant to all four classes of insecticide available for malaria control. CONCLUSIONS: Possible factors influencing the frequency of resistant individuals observed in the sentinel sites are discussed. The results of this study highlight the importance of standardized longitudinal insecticide resistance monitoring and the urgent need for studies to monitor the impact of this resistance on malaria vector control activities.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticides/pharmacology , Africa , Animals , DDT/pharmacology , Female , Fenitrothion/pharmacology , Humans , Nitriles/pharmacology , Permethrin/pharmacology , Phenylcarbamates/pharmacology , Pyrethrins/pharmacology
6.
BMC Infect Dis ; 9: 163, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19793389

ABSTRACT

BACKGROUND: Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon. METHODS: Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method. RESULTS: Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance phenotypes, suggesting that the kdr mechanism may act with certain co-factors to be identified. CONCLUSION: These results demonstrate the ongoing spread of kdr alleles in An. gambiae in Central Africa. The rapid evolution of insecticide resistance in this highly dynamic and genetically polymorphic species remains a challenge for its control.


Subject(s)
Anopheles/drug effects , DDT/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , Pyrethrins/pharmacology , Animals , Anopheles/genetics , Cameroon , Female , Genotype
7.
BMC Infect Dis ; 9: 71, 2009 May 23.
Article in English | MEDLINE | ID: mdl-19463189

ABSTRACT

BACKGROUND: Knowledge of some baseline entomological data such as Entomological Inoculation Rates (EIR) is crucially needed to assess the epidemiological impact of malaria control activities directed either against parasites or vectors. In Chad, most published surveys date back to the 1960's. In this study, anopheline species composition and their relation to malaria transmission were investigated in a dry Sudanian savannas area of Chad. METHODS: A 12-month longitudinal survey was conducted in the irrigated rice-fields area of Goulmoun in south western Chad. Human landing catches were performed each month from July 2006 to June 2007 in three compounds (indoors and outdoors) and pyrethrum spray collections were conducted in July, August and October 2006 in 10 randomly selected rooms. Mosquitoes belonging to the Anopheles gambiae complex and to the An. funestus group were identified by molecular diagnostic tools. Plasmodium falciparum infection and blood meal sources were detected by ELISA. RESULTS: Nine anopheline species were collected by the two sampling methods. The most aggressive species were An. arabiensis (51 bites/human/night), An. pharoensis (12.5 b/h/n), An. funestus (1.5 b/h/n) and An. ziemanni (1.3 b/h/n). The circumsporozoite protein rate was 1.4% for An. arabiensis, 1.4% for An. funestus, 0.8% for An. pharoensis and 0.5% for An. ziemanni. Malaria transmission is seasonal, lasting from April to December. However, more than 80% of the total EIR was concentrated in the period from August to October. The overall annual EIR was estimated at 311 bites of infected anophelines/human/year, contributed mostly by An. arabiensis (84.5%) and An. pharoensis (12.2%). Anopheles funestus and An. ziemanni played a minor role. Parasite inoculation occurred mostly after 22:00 hours but around 20% of bites of infected anophelines were distributed earlier in the evening. CONCLUSION: The present study revealed the implication of An. pharoensis in malaria transmission in the irrigated rice fields of Goulmoun, complementing the major role played by An. arabiensis. The transmission period did not depend upon irrigation. Correct use of insecticide treated nets in this area may be effective for vector control although additional protective measures are needed to prevent pre-bedtime exposure to the bites of infected anophelines.


Subject(s)
Anopheles/parasitology , Insect Vectors/parasitology , Malaria, Falciparum/transmission , Plasmodium falciparum/isolation & purification , Animals , Chad/epidemiology , Feeding Behavior , Humans , Insect Bites and Stings , Longitudinal Studies , Malaria, Falciparum/epidemiology
8.
Malar J ; 7: 192, 2008 Sep 29.
Article in English | MEDLINE | ID: mdl-18823537

ABSTRACT

BACKGROUND: Indoor residual spraying and insecticide-treated nets (ITN) are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in Anopheles gambiae sensu lato from an area of large scale ITN distribution programme in south-western Chad. METHODS: Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The An. gambiae Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the kdr locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA). RESULTS: During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1%) was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9) with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. Anopheles arabiensis was the predominant species of the An. gambiae complex in the study area, representing 75 to 100% of the samples. Screening for kdr mutations detected the L1014F mutation in 88.6% (N = 35) of surviving An. gambiae sensu stricto S form mosquitoes. All surviving An. arabiensis (N = 49) and M form An. gambiae s.s. (N = 1) carried the susceptible allele. CONCLUSION: This first investigation of malaria vector susceptibility to insecticides in Chad revealed variable levels of resistance to pyrethroid insecticides (permethrin and deltamethrin) in most An. gambiae s.l. populations. Resistance was associated with the L1014F kdr mutation in the S form of An. gambiae s.s.. Alternative mechanisms, probably of metabolic origin are involved in An. arabiensis. These results emphasize the crucial need for insecticide resistance monitoring and in-depth investigation of resistance mechanisms in malaria vectors in Chad. The impact of reduced susceptibility to pyrethroids on ITN efficacy should be further assessed.


Subject(s)
Anopheles/drug effects , Drug Resistance , Insecticides/pharmacology , Pyrethrins/pharmacology , Amino Acid Substitution/genetics , Animals , Anopheles/classification , Anopheles/genetics , Chad , Genotype , Insect Proteins/genetics , Mutation, Missense , Polymorphism, Restriction Fragment Length , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...