Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Clin Pharmacol ; 80(2): 239-248, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38041740

ABSTRACT

PURPOSE: Spironolactone is a potassium sparing diuretic used for decades. Until now, pharmacokinetic (PK) studies of spironolactone have not been conducted in infants and therefore pediatric dosing is based on expert opinion. We aimed to describe the PK profiles of spironolactone and its main metabolites (7alpha-thiomethylspironolactone (TMS) and canrenone (CAN)) in infants up to two years of age. METHODS: The PK of spironolactone and its main metabolites were evaluated following an oral administration of spironolactone (1 mg/kg/dose) to pediatric patients with chronic heart failure, ascites, and/or oedema. The plasma concentration of spironolactone and metabolites (TMS and CAN) was determined using an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Based on rich sampling PK data, the estimation of population PK parameters was performed using nonlinear mixed-effects modelling software Monolix 2018R2. RESULTS: A total of 150 spironolactone, 158 TMS, and 158 CAN concentrations from 23 patients (ages: 3 days-21 months; median weight 4.3 kg (2.2-12.6)) were available for PK analysis. A one-compartment model for spironolactone, TMS, and CAN best fitted the data. The median (range) of individual estimated apparent clearance values were 47.7 (11.9-138.1) L/h for spironolactone, 9.7 (1.5-66.9) L/h for TMS, and 1.0 (0.2-5.9) L/h for CAN. The disposition of spironolactone and metabolites was mainly affected by size of the patient: body weight explained 22% of inter-individual variability of spironolactone clearance. None of the undesirable effects of spironolactone was documented during the study period. CONCLUSION: The pharmacokinetics of spironolactone and its metabolites was highly variable between patients below 2 years of age. Body weight explained a significant part of this variability; this highlights the need to take it into account for dosing prescription in this population. (Clinical trial Registration Number 2013-001189-40).


Subject(s)
Spironolactone , Tandem Mass Spectrometry , Child , Humans , Infant , Infant, Newborn , Body Weight , Canrenone/pharmacokinetics , Spironolactone/pharmacokinetics , Mineralocorticoid Receptor Antagonists/pharmacokinetics
2.
Eur J Clin Pharmacol ; 78(6): 989-1001, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35275224

ABSTRACT

PURPOSE: Estimated glomerular filtration rate (eGFR) equations reflect kidney function imprecisely. We aimed to describe whether iohexol-based GFR or eGFRs predict clearance of cefepime, piperacillin, and tazobactam in pharmacokinetic (PK) models in this population and its clinical significance. METHODS: Hospitalized patients (0.5-25 years) with haemato-oncological disease and infection receiving cefepime or piperacillin/tazobactam were included. PK samples were collected at a steady state concomitantly with samples for iohexol-based GFR. PK models were developed in NONMEM. Weight, postmenstrual age, iohexol-based GFR, different eGFR equations (Schwartz updated, Lund-Malmö revised, CKD-EPI, Bouvet, Schwartz cystatin C-based) were tested as covariates. Probabilities of neurotoxic/therapeutic concentrations were assessed by simulations. RESULTS: Fifteen patients receiving cefepime and 17 piperacillin/tazobactam were included (median (range) age 16.2 (1.9-26.0) and 10.5 (0.8-25.6) years, iohexol-based GFR 102 (68-140) and 116 (74-137) mL/min/1.73 m2, respectively). Two-compartment model provided the best fit for all drugs. Weight was covariate for central and peripheral compartment, clearance and intercompartmental clearance (only tazobactam), and postmenstrual age for clearance (excluding cefepime). Iohexol-based GFR was the best predictor of clearance. The model of cefepime without vs with iohexol-based GFR underestimated the probability of neurotoxic concentrations (28.3-28.6% vs 52.1-69.3%) and overestimated the probability of therapeutic concentrations (> 90% vs 81.9-87.1%) in the case of iohexol-based GFR 70-80 and 130-140 mL/min/1.73 m2, respectively. CONCLUSION: Iohexol-based GFR can predict better than eGFRs the clearance of cefepime, piperacillin, and tazobactam in children and young adults with haemato-oncological disease and infection, warranting further investigation as an indicator of renal function to improve targeting of therapeutic window. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION: EudraCT 2015-000,631-32, EudraCT 2016-003,374-40 (24.10.2016).


Subject(s)
Iohexol , Piperacillin , Adolescent , Cefepime , Child , Creatinine , Glomerular Filtration Rate , Humans , Iohexol/pharmacokinetics , Kidney Function Tests , Tazobactam , Young Adult
3.
Pediatr Blood Cancer ; 69(1): e29305, 2022 01.
Article in English | MEDLINE | ID: mdl-34472203

ABSTRACT

BACKGROUND: Children with cancer and infection may develop glomerular hyperfiltration. With the aim to determine the prevalence of glomerular hyperfiltration in children and young adults with haemato-oncological disease and infection, we developed population pharmacokinetic model of iohexol. We further aimed to assess the accuracy of estimated glomerular filtration rate (eGFR) equations and single- or two-point measured GFR (mGFR) formulas compared with GFR based on iohexol clearance from our population pharmacokinetic model (iGFR). PROCEDURE: Hospitalised patients (0.5-25 years) with haemato-oncological disease and infection were included if their eGFR was ≥80 ml/min/1.73 m2 at the screening visit. Iohexol plasma concentrations were described by population pharmacokinetic model. Bias, precision and accuracy of 23 eGFR equations and 18 mGFR formulas were calculated. RESULTS: Total of 32 iohexol administrations were performed in 28 patients. Median (range) eGFR was 136 ml/min/1.73 m2 (74-234) and age 15.1 years (0.8-26.0). Three-compartment model with allometric scaling of central, one peripheral compartment and clearance (with power 0.75) to weight fitted the best. Median (range) iGFR was 103 ml/min/1.73 m2 (68-140). All except one eGFR equation overestimated GFR. Lund-Malmö revised eGFR equation performed the best, followed by Gao equation. Of single- or two-point mGFR formulas, 15 overestimated iGFR. Modified Jacobsson formula at 5.5 hours performed the best, followed by Fleming formula at 3 hours. CONCLUSIONS: In children and young adults with haemato-oncological disease and infection, renal function is best described by iohexol clearance from three-compartment pharmacokinetic model, while eGFR equations and single- and two-point mGFR formulas overestimate iGFR.


Subject(s)
Infections , Kidney Diseases , Neoplasms , Adolescent , Adult , Child , Glomerular Filtration Rate , Humans , Infections/physiopathology , Iohexol , Kidney Diseases/physiopathology , Kidney Function Tests , Neoplasms/physiopathology , Young Adult
4.
Br J Clin Pharmacol ; 85(10): 2332-2340, 2019 10.
Article in English | MEDLINE | ID: mdl-31269280

ABSTRACT

AIMS: Drug disposition in children may vary from adults due to age-related variation in drug metabolism. Microdose studies present an innovation to study pharmacokinetics (PK) in paediatrics; however, they should be used only when the PK is dose linear. We aimed to assess dose linearity of a [14 C]midazolam microdose, by comparing the PK of an intravenous (IV) microtracer (a microdose given simultaneously with a therapeutic midazolam dose), with the PK of a single isolated microdose. METHODS: Preterm to 2-year-old infants admitted to the intensive care unit received [14 C]midazolam IV as a microtracer or microdose, followed by dense blood sampling up to 36 hours. Plasma concentrations of [14 C]midazolam and [14 C]1-hydroxy-midazolam were determined by accelerator mass spectrometry. Noncompartmental PK analysis was performed and a population PK model was developed. RESULTS: Of 15 infants (median gestational age 39.4 [range 23.9-41.4] weeks, postnatal age 11.4 [0.6-49.1] weeks), 6 received a microtracer and 9 a microdose of [14 C]midazolam (111 Bq kg-1 ; 37.6 ng kg-1 ). In a 2-compartment PK model, bodyweight was the most significant covariate for volume of distribution. There was no statistically significant difference in any PK parameter between the microdose and microtracer, nor in the area under curve ratio [14 C]1-OH-midazolam/[14 C]midazolam, showing the PK of midazolam to be linear within the range of the therapeutic and microdoses. CONCLUSION: Our data support the dose linearity of the PK of an IV [14 C]midazolam microdose in children. Hence, a [14 C]midazolam microdosing approach may be used as an alternative to a therapeutic dose of midazolam to study developmental changes in hepatic CYP3A activity in young children.


Subject(s)
Hypnotics and Sedatives/administration & dosage , Midazolam/administration & dosage , Models, Biological , Administration, Intravenous , Age Factors , Area Under Curve , Carbon Radioisotopes , Dose-Response Relationship, Drug , Humans , Hypnotics and Sedatives/pharmacokinetics , Infant , Infant, Newborn , Intensive Care Units , Midazolam/analogs & derivatives , Midazolam/pharmacokinetics , Tissue Distribution
5.
Br J Haematol ; 184(6): 982-993, 2019 03.
Article in English | MEDLINE | ID: mdl-30680711

ABSTRACT

The population-based Nordic/Baltic acute lymphoblastic leukaemia (ALL) Nordic Society for Paediatric Haematology and Oncology (NOPHO) ALL2008 protocol combined minimal residual disease (MRD)-driven treatment stratification with very intense first line chemotherapy for patients with high risk ALL. Patients with MRD ≥5% at end of induction or ≥10-3 at end of consolidation or following two high risk blocks were eligible for haematopoietic cell transplantation (HCT) in first remission. After at least three high risk blocks a total of 71 children received HCT, of which 46 had MRD ≥5% at end of induction. Ten patients stratified to HCT were not transplanted; 12 received HCT without protocol indication. Among 69 patients with evaluable pre-HCT MRD results, 22 were MRD-positive, one with MRD ≥10-3 . After a median follow-up of 5·5 years, the cumulative incidence of relapse was 23·5% (95% confidence interval [CI]: 10·5-47·7) for MRD-positive versus 5·1% (95% CI: 1·3-19·2), P = 0·02) for MRD-negative patients. MRD was the only variable significantly associated with relapse (hazard ratio 9·1, 95% CI: 1·6-51·0, P = 0·012). Non-relapse mortality did not differ between the two groups, resulting in disease-free survival of 85·6% (95% CI: 75·4-97·2) and 67·4% (95% CI: 50·2-90·5), respectively. In conclusion, NOPHO block treatment efficiently reduced residual leukaemia which, combined with modern transplant procedures, provided high survival rates, also among pre-HCT MRD-positive patients.


Subject(s)
Neoplasm, Residual/etiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Acute Disease , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Neoplasm, Residual/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Risk Factors
6.
Anal Bioanal Chem ; 409(12): 3145-3151, 2017 May.
Article in English | MEDLINE | ID: mdl-28224249

ABSTRACT

This paper describes an LC-MS/MS method to determine the concentration of spironolactone and its metabolites 7-alpha-methylthiospironolactone and canrenone in blood plasma samples. The resulting assay is simple (using protein precipitation for sample preparation) and sensitive (the lower limit of quantification is close to 0.5 ng/ml) while requiring only 50 µl of plasma, making it especially suitable for analyzing samples obtained from pediatric and neonatal patients where sample sizes are limited. The sensitivity is achieved by using ammonium fluoride as an eluent additive, which in our case amplifies the signal from our analytes in the plasma solution on average about 70 times. The method is fully validated according to the European Medicines Agency's guideline and used for the measurement of pediatric patients' samples in clinical trials for evaluating oral spironolactone's and its metabolites' pharmacokinetics in children up to 2 years of age.


Subject(s)
Canrenone/blood , Chromatography, High Pressure Liquid/methods , Mineralocorticoid Receptor Antagonists/blood , Spironolactone/analogs & derivatives , Spironolactone/blood , Tandem Mass Spectrometry/methods , Canrenone/metabolism , Humans , Limit of Detection , Mineralocorticoid Receptor Antagonists/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Spironolactone/metabolism
7.
Antimicrob Agents Chemother ; 56(9): 4760-4, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22733063

ABSTRACT

Prolonged infusion of meropenem has been suggested in studies with population pharmacokinetic modeling but has not been tested in neonates. We compared the steady-state pharmacokinetics (PK) of meropenem given as a short (30-min) or prolonged (4-h) infusion to very-low-birth-weight (gestational age, <32 weeks; birth weight, <1,200 g) neonates to define the appropriate dosing regimen for a phase 3 efficacy study. Short (n = 9) or prolonged (n = 10) infusions of meropenem were given at a dose of 20 mg/kg every 12 h. Immediately before and 0.5, 1.5, 4, 8, and 12 h after the 4th to 7th doses of meropenem, blood samples were collected. Meropenem concentrations were measured by ultrahigh-performance liquid chromatography. PK analysis was performed with WinNonlin software, and modeling was performed with NONMEM software. A short infusion resulted in a higher mean drug concentration in serum (C(max)) than a prolonged infusion (89 versus 54 mg/liter). In all but two patients in the prolonged-infusion group, the free serum drug concentration was above the MIC (2 mg/liter) 100% of the time. Meropenem clearance (CL) was not influenced by postnatal or postmenstrual age. In population PK analysis, a one-compartment model provided the best fit and the steady-state distribution volume (V(ss)) was scaled with body weight and CL with a published renal maturation function. The covariates serum creatinine and postnatal and gestational ages did not improve the model fit. The final parameter estimates were a V(ss) of 0.301 liter/kg and a CL of 0.061 liter/h/kg. Meropenem infusions of 30 min are acceptable as they balance a reasonably high C(max) with convenience of dosing. In very-low-birth-weight neonates, no dosing adjustment is needed over the first month of life.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Infant, Premature, Diseases/drug therapy , Models, Statistical , Software , Thienamycins/administration & dosage , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/pharmacokinetics , Chromatography, High Pressure Liquid , Creatinine/blood , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Dosage Calculations , Enterocolitis, Necrotizing/drug therapy , Enterocolitis, Necrotizing/microbiology , Female , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Humans , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/microbiology , Infant, Very Low Birth Weight , Infusions, Intravenous , Male , Meropenem , Pneumonia/drug therapy , Pneumonia/microbiology , Sepsis/drug therapy , Sepsis/microbiology , Thienamycins/blood , Thienamycins/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...