Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 371: 85-100, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782063

ABSTRACT

Lipid conjugates have advanced the field of lipid-based nanomedicine by promoting active-targeting (ligand, peptide, antibody), stability (PEGylation), controlled release (lipoid prodrug), and probe-based tracking (fluorophore). Recent findings indicate lipid conjugates dissociating from nanomedicine upon encountering a biological environment. Yet, implications for (pre)clinical outcomes remain unclear. In this study, using the zebrafish model (Danio rerio), we investigated the fate of liposome-incorporated lipid fluorophore conjugates (LFCs) after intravenous (IV) administration. LFCs having a bilayer mismatch and relatively polar fluorophore revealed counter-predictive outcomes for Caelyx/Doxil (clearance vs. circulating) and AmBisome-like liposomes (scavenger endothelial cell vs. macrophage uptake). Findings on LFC (mis)match for Caelyx/Doxil-like liposomes were supported by translational intravital imaging studies in mice. Importantly, contradicting observations suggest to originate from LFC dissociation in vivo, which was investigated by Asymmetric Flow Field-Flow Fractionation (AF4) upon liposome-serum incubation in situ. Our data suggests that LFCs matching with the liposome bilayer composition - that did not dissociate upon serum incubation - revealed improved predictive outcomes for liposome biodistribution profiles. Altogether, this study highlights the critical importance of fatty acid tail length and headgroup moiety when selecting lipid conjugates for lipid-based nanomedicine.


Subject(s)
Lipids , Liposomes , Nanomedicine , Zebrafish , Animals , Nanomedicine/methods , Lipids/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/pharmacokinetics , Mice , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Doxorubicin/analogs & derivatives
2.
Biomed Pharmacother ; 165: 115065, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37406506

ABSTRACT

Ionizable cationic lipids (ICLs) play an essential role in the effectiveness of lipid nanoparticles (LNPs) for delivery of mRNA therapeutics and vaccines; therefore, critical evaluations of their biological performance would extend the existing knowledge in the field. In the present study, we examined the effects of the three clinically-approved ICLs, Dlin-MC3-DMA, ALC-0315 and SM-102, as well as DODAP, on the in vitro and in vivo performance of LNPs for mRNA delivery and vaccine efficacy. mRNA-LNPs containing these lipids were successfully prepared, which were all found to be very similar in their physicochemical properties and mRNA encapsulation efficiencies. Furthermore, the results of the in vitro studies indicated that these mRNA-LNPs were efficiently taken up by immortalized and primary immune cells with comparable efficiency; however, SM-102-based LNPs were superior in inducing protein expression and antigen-specific T cell proliferation. In contrast, in vivo studies revealed that LNPs containing ALC-0315 and SM-102 yielded almost identical protein expression levels in zebrafish embryos, which were significantly higher than Dlin-MC3-DMA-based LNPs. Additionally, a mouse immunization study demonstrated that a single-dose subcutaneous administration of the mRNA-LNPs resulted in a high production of intracellular cytokines by antigen-specific T cells, but no significant differences among the three clinically-approved ICLs were observed, suggesting a weak correlation between in vitro and in vivo outcomes. This study provides strong evidence that ICLs modulate the performance of mRNA-LNPs and that in vitro data does not adequately predict their behavior in vivo.


Subject(s)
Lipids , Nanoparticles , Animals , Mice , Lipids/chemistry , RNA, Messenger , Vaccine Efficacy , Zebrafish/metabolism , Transfection , Nanoparticles/chemistry , RNA, Small Interfering/genetics
3.
Thromb Res ; 220: 75-87, 2022 12.
Article in English | MEDLINE | ID: mdl-36274391

ABSTRACT

INTRODUCTION: There is evidence that plasma protein profiles differ in the two subtypes of pulmonary embolism (PE), isolated PE (iPE) and deep vein thrombosis (DVT)-associated PE (DVT-PE), in the acute phase. The aim of this study was to determine specific plasma signatures for proteins related to platelets in acute iPE and DVT-PE compared to isolated DVT (iDVT). METHODS: Within the Genotyping and Molecular Phenotyping of Venous ThromboEmbolism (GMP-VTE) Project, a multicenter prospective cohort study of 693 confirmed VTE cases, a highly sensitive targeted proteomics approach based on dual-antibody proximity extension assay was applied. LASSO-regularized logistic regression analysis selected 33 and 30 of 135 platelet-related candidate proteins in iPE and DVT-PE vs. iDVT, respectively. RESULTS: All regulated proteins were well associated with six prominently released platelet proteins and the majority showed specificity for iPE and DVT-PE compared to iDVT. While iPE-specific proteins were assigned to be predominantly released via shedding mechanisms and extracellular vesicles, granule secretion was identified as a major release mechanism assigned to DVT-associated PE-specific proteins. Network analysis demonstrated three interconnected clusters of specifically regulated proteins in iPE linked to immunoreceptor signaling, pathogen clearance and chemotaxis, whereas for DVT-associated PE one cluster linked to tissue remodeling and leukocyte trafficking. Machine learning-based analysis reveals specific plasma signatures and differential release mechanisms of proteins related to platelets in acute iPE and DVT-associated PE. CONCLUSION: These data suggest that the platelet protein releasate contributes to the differential regulation of plasma proteins in acute PE compared to iDVT, which may be associated with different platelet activation patterns.


Subject(s)
Pulmonary Embolism , Venous Thromboembolism , Humans , Venous Thromboembolism/complications , Prospective Studies , Blood Platelets , Pulmonary Embolism/complications , Acute Disease , Risk Factors
4.
Angew Chem Int Ed Engl ; 58(37): 13093-13100, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31314159

ABSTRACT

Synthetic metal complexes can be used as paramagnetic probes for the study of proteins and protein complexes. Herein, two transition metal NMR probes (TraNPs) are reported. TraNPs are attached through two arms to a protein to generate a pseudocontact shift (PCS) using cobalt(II), or paramagnetic relaxation enhancement (PRE) with manganese(II). The PCS analysis of TraNPs attached to three different proteins shows that the size of the anisotropic component of the magnetic susceptibility depends on the probe surroundings at the surface of the protein, contrary to what is observed for lanthanoid-based probes. The observed PCS are relatively small, making cobalt-based probes suitable for localized studies, such as of an active site. The obtained PREs are stronger than those obtained with nitroxide spin labels and the possibility to generate both PCS and PRE offers advantages. The properties of TraNPs in comparison with other cobalt-based probes are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...