Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Pediatr Transplant ; 28(3): e14759, 2024 May.
Article in English | MEDLINE | ID: mdl-38623871

ABSTRACT

BACKGROUND: Invasive fungal disease (IFD) is a frequent complication in pediatric lung transplant recipients, occurring in up to 12% of patients in the first year. Risk factors for infection include impaired lung defenses and intense immunosuppressive regimens. While most IFD occurs from Aspergillus, other fungal conidia are continuously inhaled, and infections with fungi on a spectrum of human pathogenicity can occur. CASE REPORT: We report a case of a 17-year-old lung transplant recipient in whom Irpex lacteus and Rhodotorula species were identified during surveillance bronchoscopy. She was asymptomatic and deemed to be colonized by Irpex lacteus and Rhodotorula species following transplant. 2 years after transplantation, she developed a fever, respiratory symptoms, abnormal lung imaging, and histological evidence of acute and chronic bronchitis on transbronchial biopsy. After developing symptoms concerning for a pulmonary infection and graft dysfunction, she was treated for a presumed IFD. Unfortunately, further diagnostic testing could not be performed at this time given her tenuous clinical status. Despite the initiation of antifungal therapy, her graft function continued to decline resulting in a second lung transplantation. CONCLUSIONS: This case raises the concern for IFD in lung transplant recipients from Irpex species. Further investigation is needed to understand the pathogenicity of this organism, reduce the incidence and mortality of IFD in lung transplant recipients, and refine the approach to diagnosis and manage the colonization and isolation of rare, atypical fungal pathogens in immunocompromised hosts.


Subject(s)
Invasive Fungal Infections , Lung Transplantation , Polyporales , Rhodotorula , Adolescent , Female , Humans , Antifungal Agents/therapeutic use , Bronchoscopy , Lung , Lung Transplantation/adverse effects , Transplant Recipients
2.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352318

ABSTRACT

Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. In this process, initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity were eventually lost as populations presumably gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while that of others like membrane stress responses diverged from these fitness phenotypes. C. albicans therefore has diverse options to reconfigure Pi management during prolonged scarcity. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth and virulence.

3.
Clin Infect Dis ; 78(2): 439-444, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37463411

ABSTRACT

Many hospitals have stopped or are considering stopping universal admission testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss reasons why admission testing should still be part of a layered system to prevent hospital-acquired SARS-CoV-2 infections during times of significant community transmission. These include the morbidity of SARS-CoV-2 in vulnerable patients, the predominant contribution of presymptomatic and asymptomatic people to transmission, the high rate of transmission between patients in shared rooms, and data suggesting surveillance testing is associated with fewer nosocomial infections. Preferences of diverse patient populations, particularly the hardest-hit communities, should be surveyed and used to inform prevention measures. Hospitals' ethical responsibility to protect patients from serious infections should predominate over concerns about costs, labor, and inconvenience. We call for more rigorous data on the incidence and morbidity of nosocomial SARS-CoV-2 infections and more research to help determine when to start, stop, and restart universal admission testing and other prevention measures.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Cross Infection/epidemiology , Cross Infection/prevention & control , Hospitalization
4.
mSphere ; 8(6): e0023123, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37843297

ABSTRACT

IMPORTANCE: Candida albicans is the most commonly isolated species from patients suffering from invasive fungal disease. C. albicans is most commonly a commensal organism colonizing a variety of niches in the human host. The fungus must compete for resources with the host flora to acquire essential nutrients such as phosphate. Phosphate acquisition and homeostasis have been shown to play a key role in C. albicans virulence, with several genes involved in these processes being required for normal virulence and several being upregulated during infection. In addition to inorganic phosphate (Pi), C. albicans can utilize the lipid-derived metabolite glycerophosphocholine (GPC) as a phosphate source. As GPC is available within the human host, we examined the role of GPC in phosphate homeostasis in C. albicans. We find that GPC can substitute for Pi by many though not all criteria and is likely a relevant physiological phosphate source for C. albicans.


Subject(s)
Candida albicans , Fungal Proteins , Humans , Fungal Proteins/genetics , Phosphates/metabolism , Phenotype , Virulence
5.
Cereb Cortex ; 33(16): 9664-9676, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37408110

ABSTRACT

Due to its unique biological relevance, pain-related learning might differ from learning from other aversive experiences. This functional magnetic resonance imaging study compared neural mechanisms underlying the acquisition and extinction of different threats in healthy humans. We investigated whether cue-pain associations are acquired faster and extinguished slower than cue associations with an equally unpleasant tone. Additionally, we studied the modulatory role of stimulus-related fear. Therefore, we used a differential conditioning paradigm, in which somatic heat pain stimuli and unpleasantness-matched auditory stimuli served as US. Our results show stronger acquisition learning for pain- than tone-predicting cues, which was augmented in participants with relatively higher levels of fear of pain. These behavioral findings were paralleled by activation of brain regions implicated in threat processing (insula, amygdala) and personal significance (ventromedial prefrontal cortex). By contrast, extinction learning seemed to be less dependent on the threat value of the US, both on the behavioral and neural levels. Amygdala activity, however, scaled with pain-related fear during extinction learning. Our findings on faster and stronger (i.e. "preferential") pain learning and the role of fear of pain are consistent with the biological relevance of pain and may be relevant to the development or maintenance of chronic pain.


Subject(s)
Brain Mapping , Conditioning, Classical , Humans , Brain Mapping/methods , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Pain , Magnetic Resonance Imaging
6.
Sci Rep ; 13(1): 6938, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117332

ABSTRACT

Clinical studies demonstrate the impact of smoking on bone tissue fragility and higher incidence of fractures. However, it is not totally understood which physiological mechanisms could be involved in these events. Previously, we showed important changes in bone tissue components in experimental model of cigarette smoke (CS) exposure. CS exposure induces worsening in bone mineralization and a decrease in collagen type I deposition, leading to bone fragility. Considering that the majority of clinical studies described bone structural changes by radiographic images, in this study we performed analyses "in situ" using tissue samples from smokers, former smokers and non-smokers to better understand how the increase in inflammatory mediators induced by smoking exposure could interfere in bone cells activity leading bone structural changes. We observed increased levels of IL-1ß, IL-6 and TNF-α in bone tissue homogenates with a concomitant increase in osteoblast apoptosis in smokers and former smokers compared with non-smokers. Histological changes in both smokers and former smokers were characterized by reduction in collagen type I. Only in smokers, it was observed decrease in trabecular area, suggesting increased bone resorption and increase in collagen type V. These results showed that osteoblasts apoptosis in association with increased bone resorption leads bone structural changes in smokers.


Subject(s)
Bone Resorption , Collagen Type I , Humans , Bone Matrix , Osteoblasts , Apoptosis , Smoking/adverse effects
7.
PLoS Pathog ; 18(6): e1010089, 2022 06.
Article in English | MEDLINE | ID: mdl-35687592

ABSTRACT

Whether to commit limited cellular resources toward growth and proliferation, or toward survival and stress responses, is an essential determination made by Target of Rapamycin Complex 1 (TORC1) for a eukaryotic cell in response to favorable or adverse conditions. Loss of TORC1 function is lethal. The TORC1 inhibitor rapamycin that targets the highly conserved Tor kinase domain kills fungal pathogens like Candida albicans, but is also severely toxic to human cells. The least conserved region of fungal and human Tor kinases are the N-terminal HEAT domains. We examined the role of the 8 most N-terminal HEAT repeats of C. albicans Tor1. We compared nutritional- and stress responses of cells that express a message for N-terminally truncated Tor1 from repressible tetO, with cells expressing wild type TOR1 from tetO or from the native promoter. Some but not all stress responses were significantly impaired by loss of Tor1 N-terminal HEAT repeats, including those to oxidative-, cell wall-, and heat stress; in contrast, plasma membrane stress and antifungal agents that disrupt plasma membrane function were tolerated by cells lacking this Tor1 region. Translation was inappropriately upregulated during oxidative stress in cells lacking N-terminal Tor1 HEAT repeats despite simultaneously elevated Gcn2 activity, while activation of the oxidative stress response MAP kinase Hog1 was weak. Conversely, these cells were unable to take advantage of favorable nutritional conditions by accelerating their growth. Consuming oxygen more slowly than cells containing wild type TOR1 alleles during growth in glucose, cells lacking N-terminal Tor1 HEAT repeats additionally were incapable of utilizing non-fermentable carbon sources. They were also hypersensitive to inhibitors of specific complexes within the respiratory electron transport chain, suggesting that inefficient ATP generation and a resulting dearth of nucleotide sugar building blocks for cell wall polysaccharides causes cell wall integrity defects in these mutants. Genome-wide expression analysis of cells lacking N-terminal HEAT repeats showed dysregulation of carbon metabolism, cell wall biosynthetic enzymes, translational machinery biosynthesis, oxidative stress responses, and hyphal- as well as white-opaque cell type-associated genes. Targeting fungal-specific Tor1 N-terminal HEAT repeats with small molecules might selectively abrogate fungal viability, especially when during infection multiple stresses are imposed by the host immune system.


Subject(s)
Candida albicans , Fungal Proteins , Candida albicans/metabolism , Carbon/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Humans , Hyphae , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
8.
PLoS Negl Trop Dis ; 16(6): e0010524, 2022 06.
Article in English | MEDLINE | ID: mdl-35709253

ABSTRACT

BACKGROUND: Chagas disease is a potentially life-threatening neglected disease of poverty that is endemic in continental Latin America. Caused by Trypanosoma cruzi (T. cruzi), it is one of six parasitic diseases in the United States targeted by the Centers for Disease Control as a public health problem in need of action. An estimated 300,000 people are infected with T. cruzi in the United States (US). Although its morbidity, mortality and economic burden are high, awareness of Chagas disease is lacking among many healthcare providers in the US. The purpose of this analysis is to determine if the number of diagnostic tests performed at a community health center serving an at-risk population for Chagas disease increased after information sessions. A secondary aim was to determine if there was a difference by provider type, i.e., nurse practitioner vs. physician, or by specialty in the number of patients screened. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective data analysis of the number of Chagas serology tests performed at a community health center before and after information sessions for clinicians. A time series analysis was conducted focusing on the Adult and Family Medicine Departments at East Boston Neighborhood Health Center (EBNHC). Across all departments there were 1,957 T. cruzi tests performed before the sessions vs. 2,623 after the sessions. Interrupted time series analysis across departments indicated that testing volume was stable over time prior to the sessions (pre-period slope = +4.1 per month; p = 0.12), followed by an immediate shift after the session (+51.6; p = 0.03), while testing volume remained stable over time after the session (post-period slope = -6.0 per month; p = 0.11). CONCLUSION/SIGNIFICANCE: In this study, Chagas testing increased after information sessions. Clinicians who began testing their patients for Chagas disease after learning of the importance of this intervention added an extra, potentially time-consuming task to their already busy workdays without external incentives or recognition.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Adult , Chagas Disease/parasitology , Humans , Neglected Diseases , Retrospective Studies , Serologic Tests , United States
9.
Nat Commun ; 12(1): 6699, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795266

ABSTRACT

Candida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis. Here we show disruption of GSDMD, a known inflammasome target and key pyroptotic cell death mediator, paradoxically alleviates candidiasis, improving outcomes and survival of Candida-infected mice. Mechanistically, C. albicans hijacked the canonical inflammasome-GSDMD axis-mediated pyroptosis to promote their escape from macrophages, deploying hyphae and candidalysin, a pore-forming toxin expressed by hyphae. GSDMD inhibition alleviated candidiasis by preventing C. albicans escape from macrophages while maintaining inflammasome-dependent but GSDMD-independent IL-1ß production for anti-fungal host defenses. This study demonstrates key functions for GSDMD in Candida's escape from host immunity in vitro and in vivo and suggests that GSDMD may be a potential therapeutic target in C. albicans-induced sepsis.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Inflammasomes/immunology , Intracellular Signaling Peptides and Proteins/immunology , Macrophages/immunology , Phosphate-Binding Proteins/immunology , Animals , Candida albicans/physiology , Candidiasis/genetics , Candidiasis/microbiology , Caspase 1/genetics , Caspase 1/immunology , Caspase 1/metabolism , Cells, Cultured , Female , Host-Pathogen Interactions/immunology , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kaplan-Meier Estimate , Kidney/immunology , Kidney/metabolism , Kidney/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism
10.
Cells ; 10(7)2021 06 22.
Article in English | MEDLINE | ID: mdl-34206428

ABSTRACT

Th17/Treg imbalance plays a pivotal role in COPD development and progression. We aimed to assess Th17/Treg-related intracellular signaling at different COPD stages in local and systemic responses. Lung tissue and/or peripheral blood samples were collected and divided into non-obstructed (NOS), COPD stages I and II, and COPD stages III and IV groups. Gene expression of STAT3 and -5, RORγt, Foxp3, interleukin (IL)-6, -17, -10, and TGF-ß was assessed by RT-qPCR. IL-6, -17, -10, and TGF-ß levels were determined by ELISA. We observed increased STAT3, RORγt, Foxp3, IL-6, and TGF-ß gene expression and IL-6 levels in the lungs of COPD I and II patients compared to those of NOS patients. Regarding the systemic response, we observed increased STAT3, RORγt, IL-6, and TGF-ß gene expression in the COPD III and IV group and increased IL-6 levels in the COPD I and II group. STAT5 was increased in COPD III and IV patients, although there was a decrease in Foxp3 expression and IL-10 levels in the COPD I and II and COPD III and IV groups, respectively. We demonstrated that an increase in Th17 intracellular signaling in the lungs precedes this increase in the systemic response, whereas Treg intracellular signaling varies between the compartments analyzed in different COPD stages.


Subject(s)
Intracellular Space/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , Signal Transduction , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Aged , Cytokines/metabolism , Female , Humans , Lung/immunology , Lung/pathology , Male , Middle Aged , Transcription Factors/metabolism
11.
PLoS One ; 16(2): e0246783, 2021.
Article in English | MEDLINE | ID: mdl-33635887

ABSTRACT

BACKGROUND: Chagas disease is a vector borne infection of poverty endemic to Latin America which affects an estimated 40,000 women of child-bearing age in the United States (US). In the US Chagas disease is concentrated among individuals who have lived in endemic areas. Prenatal diagnosis and treatment are needed to prevent congenital transmission. The objective of this study was to assess perceived barriers to Chagas disease screening among prenatal care providers in Obstetrics/Gynecology and Family Medicine Departments of a tertiary care safety-net hospital caring for a significant at-risk population. METHODOLOGY/PRINCIPAL FINDINGS: An anonymous survey was distributed to 178 Obstetrics/Gynecology and Family Medicine practitioners. Of the 66 respondents, 39% thought Chagas screening was very important, and 48% somewhat important as a public health initiative. One third judged screening patients during clinic visits as very important. Most respondents (64%) reported being familiar with Chagas disease. However, only 32% knew how to order a test and only 22% reported knowing what to do if a test was positive. CONCLUSIONS/SIGNIFICANCE: These findings will be incorporated into measures to facilitate full implementation of Chagas screening, and can inform initiatives at other centers who wish to address this deeply neglected infection among their patient families. Greater integration of information on Chagas disease screening and treatment in medical and nursing education curricula can contribute to addressing this disease with the focus that its potentially fatal sequelae merit.


Subject(s)
Chagas Disease/diagnosis , Chagas Disease/prevention & control , Prenatal Care/methods , Adult , Chagas Disease/epidemiology , Female , Humans , Latin America/epidemiology , Mass Screening , Poverty , Pregnancy , Surveys and Questionnaires , United States/epidemiology
12.
J Fungi (Basel) ; 7(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499285

ABSTRACT

Candida bloodstream infections (CBSIs) have decreased among pediatric populations in the United States, but remain an important cause of morbidity and mortality. Species distributions and susceptibility patterns of CBSI isolates diverge widely between children and adults. The awareness of these patterns can inform clinical decision-making for empiric or pre-emptive therapy of children at risk for candidemia. CBSIs occurring from 2006-2016 among patients in a large children's hospital were analyzed for age specific trends in incidence rate, risk factors for breakthrough-CBSI, and death, as well as underlying conditions. Candida species distributions and susceptibility patterns were evaluated in addition to the anti-fungal agent use. The overall incidence rate of CBSI among this complex patient population was 1.97/1000 patient-days. About half of CBSI episodes occurred in immunocompetent children and 14% in neonatal intensive care unit (NICU) patients. Anti-fungal resistance was minimal: 96.7% of isolates were fluconazole, 99% were micafungin, and all were amphotericin susceptible. Liposomal amphotericin was the most commonly prescribed anti-fungal agent included for NICU patients. Overall, CBSI-associated mortality was 13.7%; there were no deaths associated with CBSI among NICU patients after 2011. Pediatric CBSI characteristics differ substantially from those in adults. The improved management of underlying diseases and antimicrobial stewardship may further decrease morbidity and mortality from CBSI, while continuing to maintain low resistance rates among Candida isolates.

13.
Sci Rep ; 10(1): 15287, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943702

ABSTRACT

Th17/Treg imbalance contributes to chronic obstructive pulmonary disease (COPD) development and progression. However, intracellular signaling by suppressor of cytokine signaling (SOCS) 1 and SOCS3 and the proteins signal transducer and activator of transcription (STAT) 3 and STAT5 that orchestrate these imbalances are currently poorly understood. Thus, these proteins were investigated in C57BL/6 mice after exposure to cigarette smoke (CS) for 3 and 6 months. The expression of interleukin was measured by ELISA and the density of positive cells in peribronchovascular areas was quantified by immunohistochemistry. We showed that exposure to CS in the 3rd month first induced decreases in the numbers of STAT5+ and pSTAT5+ cells and the expression levels of TGF-ß and IL-10. The increases in the numbers of STAT3+ and pSTAT3+ cells and IL-17 expression occurred later (6th month). These findings corroborate the increases in the number of SOCS1+ cells in both the 3rd and 6th months, with concomitant decreases in SOCS3+ cells at the same time points. Our results demonstrated that beginning with the initiation of COPD development, there was a downregulation of the anti-inflammatory response mediated by SOCS and STAT proteins. These results highlight the importance of intracellular signaling in Th17/Treg imbalance and the identification of possible targets for future therapeutic approaches.


Subject(s)
Cytokines/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Disease Progression , Down-Regulation/immunology , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL , STAT3 Transcription Factor/immunology , Suppressor of Cytokine Signaling 1 Protein/immunology , Suppressor of Cytokine Signaling 3 Protein/immunology
14.
J Fungi (Basel) ; 6(2)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32224872

ABSTRACT

Candida species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative C. glabrata, and the more distantly related C. albicans, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.

15.
mBio ; 11(2)2020 03 17.
Article in English | MEDLINE | ID: mdl-32184254

ABSTRACT

The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans' tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.IMPORTANCECandida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency.


Subject(s)
Candida albicans/metabolism , Cell Wall/metabolism , Fungal Polysaccharides/biosynthesis , Fungal Proteins/metabolism , Phosphates/metabolism , Candida albicans/genetics , Fungal Proteins/genetics , Metabolomics
17.
PLoS One ; 15(1): e0228393, 2020.
Article in English | MEDLINE | ID: mdl-32004356

ABSTRACT

Chronic exposure to ambient levels of air pollution induces respiratory illness exacerbation by increasing inflammatory responses and apoptotic cells in pulmonary tissues. The ineffective phagocytosis of these apoptotic cells (efferocytosis) by macrophages has been considered an important factor in these pathological mechanisms. Depending on microenvironmental stimuli, macrophages can assume different phenotypes with different functional actions. M1 macrophages are recognized by their proinflammatory activity, whereas M2 macrophages play pivotal roles in responding to microorganisms and in efferocytosis to avoid the progression of inflammatory conditions. To verify how exposure to air pollutants interferes with macrophage polarization in emphysema development, we evaluated the different macrophage phenotypes in a PPE- induced model with the exposure to diesel exhaust particles. C57BL/6 mice received intranasal instillation of porcine pancreatic elastase (PPE) to induce emphysema, and the control groups received saline. Both groups were exposed to diesel exhaust particles or filtered air for 60 days according to the groups. We observed that both the diesel and PPE groups had an increase in alveolar enlargement, collagen and elastic fibers in the parenchyma and the number of macrophages, lymphocytes and epithelial cells in BAL, and these responses were exacerbated in animals that received PPE instillation prior to exposure to diesel exhaust particles. The same response pattern was found inCaspase-3 positive cell analysis, attesting to an increase in cell apoptosis, which is in agreement with the increase in M2 phenotype markers, measured by RT-PCR and flow cytometry analysis. We did not verify differences among the groups for the M1 phenotype. In conclusion, our results showed that both chronic exposure to diesel exhaust particles and PPE instillation induced inflammatory conditions, cell apoptosis and emphysema development, as well as an increase in M2 phenotype macrophages, and the combination of these two factors exacerbated these responses. The predominance of the M2-like phenotype likely occurred due to the increased demand for efferocytosis. However, M2 macrophage activity was ineffective, resulting in emphysema development and worsening of symptoms.


Subject(s)
Air Pollutants/toxicity , Macrophages/metabolism , Pancreatic Elastase/adverse effects , Pulmonary Emphysema/immunology , Vehicle Emissions/toxicity , Administration, Intranasal , Animals , Apoptosis , Bronchoalveolar Lavage Fluid/immunology , Case-Control Studies , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Pancreatic Elastase/administration & dosage , Pulmonary Emphysema/chemically induced
19.
Biol Open ; 8(4)2019 Apr 26.
Article in English | MEDLINE | ID: mdl-30971412

ABSTRACT

Macrophages play a pivotal role in the development of emphysema and depending on the microenvironment stimuli can be polarized into M1- or M2-like macrophage phenotypes. We compared macrophage polarizations in cigarette smoke (CS)- and porcine pancreatic elastase (PPE)-induced emphysema models. C57BL/6 mice were subdivided into four experimental groups. In the PPE group, animals received an intranasal instillation of PPE (0.677 IU); in the saline group, animals received an intranasal instillation of saline (0.9%). Animals from both groups were euthanized on day 28. In the CS group, animals were exposed to CS for 30 min, twice a day, 5 days per week for 12 weeks. In the control group, animals received filtered air. We observed an increase in total macrophages for both experimental models. For M1-like macrophage markers, we observed an increase in TNF-α+ and IFN-γ+ cells, Cxcl-9 and Cxcl-10 expressions in PPE and CS groups. Only in the CS group, we detected an increased expression of IL-12b For M2-like macrophages markers we observed a down regulation in IL-10, IL-4, IL-13, Arg1 and Fizz1 and an increase of TGF-ß+ cells in the PPE group, while for the CS group there was an increase in TGF-ß+ cells and IL-10 expression. All exposure groups were compared to their respective controls. In summary, we demonstrated that CS- and PPE-induced models resulted in different microenvironmental stimuli. CS exposure induced an environmental stimulus related to M1- and M2-like macrophage phenotypes similar to previous results described in COPD patients, whereas the elastase-induced model provided an environmental stimulus related only to the M1 phenotype.

20.
Front Plant Sci ; 10: 405, 2019.
Article in English | MEDLINE | ID: mdl-31024583

ABSTRACT

While a severe decrease in phosphorus (P) availability is already taking place in a large number of ecosystems, drought and nitrogen (N) deposition will likely further decrease the availability of P under global change. Plants have developed physiological strategies to cope with decreasing P resources, but it is unclear how these strategies respond to elevated N deposition and summer droughts. We investigated the influence of N and P availability and soil drought on P uptake (H3 33PO4 feeding experiment) and use efficiencies in young Quercus calliprinos Webb. trees. We hypothesized that (H1) the expected increases in soil N:P ratios will increase the efficiencies of P uptake and use of oak saplings but will decrease the efficiencies of N uptake and use, whereas (H2) drought will affect P uptake efficiency more than N uptake efficiency. In confirmation of (H1) we found that a sharp increase of the soil N:P ratio from 4 to 42 g g-1 significantly increased the instantaneous 33P uptake efficiency (33PUptakeE) by five-fold and long-term P uptake efficiency (PUptakeE) by six-fold, while it decreased N uptake efficiency (NUptakeE) and N use efficiency (NUE). In contradiction to (H1), P use efficiency (PUE) did not respond to the simulated extended gradient of soil N:P ratios but remained relatively constant. (H2) was only partially confirmed as soil drought reduced PUptakeE by up to a fourth at high soil N:P ratios but had no significant effect on NUptakeE. As a consequence, increasing summer droughts may decrease the response of PUptakeE to increasing P limitation, which - in the absence of adjustments of the efficiency of P use - can aggravate growth reductions in this eastern Mediterranean tree species under global change.

SELECTION OF CITATIONS
SEARCH DETAIL
...