Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 258: 53-59, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28867173

ABSTRACT

Capa and pyrokinin (pk) genes in hexapods share a common evolutionary origin. Using transcriptomics and peptidomics, we analyzed products of these genes in two beetles, the giant mealworm beetle (Zophobas atratus; Tenebrionidae) and the boll weevil (Anthonomus grandis grandis; Curculionidae). Our data revealed that even within Coleoptera, which represents a very well-defined group of insects, highly different evolutionary developments occurred in the neuropeptidergic system. These differences, however, primarily affect the general structure of the precursors and differential processing of mature peptides and, to a lesser degree, the sequences of the active core motifs. With the differential processing of the CAPA-precursor in Z. atratus we found a perfect example of completely different products cleaved from a single neuropeptide precursor in different cells. The CAPA precursor in abdominal ganglia of this species yields primarily periviscerokinins (PVKs) whereas processing of the same precursor in neurosecretory cells of the subesophageal ganglion results in CAPA-tryptoPK and a novel CAPA-PK. Particularly important was the detection of that CAPA-PK which has never been observed in the CNS of insects before. The three different types of CAPA peptides (CAPA-tryptoPK, CAPA-PK, PVK) each represent potential ligands which activate different receptors. In contrast to the processing of the CAPA precursor from Z. atratus, no indications of a differential processing of the CAPA precursor were found in A. g. grandis. These data suggest that rapid evolutionary changes regarding the processing of CAPA precursors were still going on when the different beetle lineages diverged. The sequence of the single known PVK of A. g. grandis occupies a special position within the known PVKs of insects and might serve asa basis to develop lineage-specific peptidomimetics capable of disrupting physiological processes regulated by PVKs.


Subject(s)
Neuropeptides/metabolism , Protein Processing, Post-Translational , Tenebrio/metabolism , Weevils/metabolism , Abdomen/innervation , Amino Acid Sequence , Animals , Gene Expression Profiling , Neuropeptides/chemistry , Neuropeptides/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tenebrio/genetics , Transcriptome/genetics , Weevils/genetics
2.
PLoS One ; 9(4): e94274, 2014.
Article in English | MEDLINE | ID: mdl-24718032

ABSTRACT

Recent genome analyses suggested the absence of a number of neuropeptide genes in ants. One of the apparently missing genes was the capa gene. Capa gene expression in insects is typically associated with the neuroendocrine system of abdominal ganglia; mature CAPA peptides are known to regulate diuresis and visceral muscle contraction. The apparent absence of the capa gene raised questions about possible compensation of these functions. In this study, we re-examined this controversial issue and searched for a potentially unrecognized capa gene in the fire ant, Solenopsis invicta. We employed a combination of data mining and a traditional PCR-based strategy using degenerate primers designed from conserved amino acid sequences of insect capa genes. Our findings demonstrate that ants possess and express a capa gene. As shown by MALDI-TOF mass spectrometry, processed products of the S. invicta capa gene include three CAPA periviscerokinins and low amounts of a pyrokinin which does not have the C-terminal WFGPRLa motif typical of CAPA pyrokinins in other insects. The capa gene was found with two alternative transcripts in the CNS. Within the ventral nerve cord, two capa neurons were immunostained in abdominal neuromeres 2-5, respectively, and projected into ventrally located abdominal perisympathetic organs (PSOs), which are the major hormone release sites of abdominal ganglia. The ventral location of these PSOs is a characteristic feature and was also found in another ant, Atta sexdens.


Subject(s)
Ants/genetics , Gene Expression Regulation , Genes, Insect , Alternative Splicing/genetics , Amino Acid Sequence , Animals , Base Sequence , Female , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/metabolism , Gene Expression Profiling , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Molecular Sequence Data , Neurons/metabolism , Peptides/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...