Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 22(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015758

ABSTRACT

Lead oxide (PbO) photoconductors are proposed as X-ray-to-charge transducers for the next generation of direct conversion digital X-ray detectors. Optimized PbO-based detectors have potential for utilization in high-energy and dynamic applications of medical X-ray imaging. Two polymorphs of PbO have been considered so far for imaging applications: polycrystalline lead oxide (poly-PbO) and amorphous lead oxide (a-PbO). Here, we provide the comparative analysis of two PbO-based single-pixel X-ray detector prototypes: one prototype employs only a layer of a-PbO as the photoconductor while the other has a combination of a-PbO and poly-PbO, forming a photoconductive bilayer structure of the same overall thickness as in the first prototype. We characterize the performance of these prototypes in terms of electron-hole creation energy (W±) and signal lag-major properties that define a material's suitability for low-dose real-time imaging. The results demonstrate that both X-ray photoconductive structures have an adequate temporal response suitable for real-time X-ray imaging, combined with high intrinsic sensitivity. These results are discussed in the context of structural and morphological properties of PbO to better understand the preparation-fabrication-property relationships of this material.


Subject(s)
Electrons , Lead , Oxides , Radiography , X-Rays
2.
Polymers (Basel) ; 13(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467688

ABSTRACT

Gold nanoparticles (AuNPs) display surface plasmon resonance (SPR) as a result of their irradiation at a targeted light frequency. SPR also results in heat production that increases the temperature of the surrounding environment, affecting polymerization. The aim was to investigate the SPR effect of AuNPs on a dimethacrylate-based photopolymer system. The tested composites were designed to overlap the illumination required for the polymerization and the plasmon effect. The 5 nm-sized dodecanethiol capped AuNPs were applied in different concentrations in the matrix that were irradiated with green light (λ = 532 nm), where the Irgacure 784 photoinitiator also absorbs the light. The plasmonic effect was investigated for the refractive index change by surface plasmon resonance imaging (SPRi) supplemented by ellipsometry. Moreover, optical transmission and transmission electron micrographs (TEM), diametral tensile stress (DTS), and confocal Raman spectroscopy was performed to determine the degree of conversion (DC) at 1.0, 1.4, and 2.0 mW/cm2 light intensities. It was found that the optimal conditions were at 0.0208 wt% AuNPs concentration and 1.4 mW/cm2 light intensity at which the refractive index change, DTS, and DC data were all maximal. The study confirmed that AuNPs are applicable to improve the polymerization efficiency of dental composite resin.

3.
Nanotechnol Sci Appl ; 13: 11-22, 2020.
Article in English | MEDLINE | ID: mdl-32280204

ABSTRACT

INTRODUCTION: In this work we selected components, developed technology and studied a number of parameters of polymer nanocomposite materials, remembering that the material would have high optical and good mechanical characteristics, good sorption ability in order to ensure high value of the optical signal for a short time while maintaining the initial geometric shape. In addition, if this nanocomposite is used for medicine and biology (biocompatible or biocidal materials or the creation of a sensor based on it), the material must be non-toxic and/or biocompatible. We study the creation of polymer nanocomposites which may be applied as biocompatible materials with new functional parameters. MATERIAL AND METHODS: A number of polymer nanocomposites based on various urethane-acrylate monomers and nanoparticles of gold, silicon oxides, zinc and/or titanium oxides are obtained, their mechanical (microhardness) properties and wettability (contact angle) are studied. The set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms are also investigated in order to prove their possible applicability. RESULTS AND DISCUSSION: The composition of the samples influences their microhardness and the value of contact angle, which means that varying with the monomer and the metallic, oxide nanoparticles composition, we could change these parameters. Besides it, the set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms were also investigated in order to prove their possible applicability. It was shown that the materials are non-toxic, the adhesion of microorganisms on their surface also could be varied by changing their composition. CONCLUSION: The presented polymer nanocomposites with different compositions of monomer and the presence of nanoparticles in them are prospective material for a possible bio-application as it is biocompatible, not toxic. The sorption of microorganism could be varied depending on the type of bacterias, the monomer composition, and nanoparticles.

4.
Beilstein J Nanotechnol ; 7: 630-6, 2016.
Article in English | MEDLINE | ID: mdl-27335752

ABSTRACT

Rare-earth-doped optical materials are important for light sources in optoelectronics, as well as for efficient optical amplification elements and other elements of photonics. On the basis of the previously developed method of anhydrous, low-temperature synthesis of Er/Yb oxides from their chlorides we fabricated proper nanoparticles with defined parameters and used them for the development of optically transparent, luminescent polymer nanocomposite with low optical scattering, suitable for direct, light-induced formation of photonic elements. Introduction of preformed gold nanoparticles in such a nanocomposite was also performed and an enhancement of luminescence due to the influence of plasmon effects was detected.

SELECTION OF CITATIONS
SEARCH DETAIL
...