Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Adv ; 6(1): eaaw0070, 2020 01.
Article in English | MEDLINE | ID: mdl-31922000

ABSTRACT

The social bond between parents and offspring is characterized by coadaptation and balance between altruistic and selfish tendencies. However, its underlying genetic mechanism remains poorly understood. Using transcriptomic screens in the subsocial European earwig, Forficula auricularia, we found the expression of more than 1600 genes associated with experimentally manipulated parenting. We identified two genes, Th and PebIII, each showing evidence of differential coexpression between treatments in mothers and their offspring. In vivo RNAi experiments confirmed direct and indirect genetic effects of Th and PebIII on behavior and fitness, including maternal food provisioning and reproduction, and offspring development and survival. The direction of the effects consistently indicated a reciprocally altruistic function for Th and a reciprocally selfish function for PebIII. Further metabolic pathway analyses suggested roles for Th-restricted endogenous dopaminergic reward, PebIII-mediated chemical communication and a link to insulin signaling, juvenile hormone, and vitellogenin in parent-offspring coadaptation and social evolution.


Subject(s)
Adaptation, Biological/genetics , Altruism , Biological Evolution , Transcriptome/genetics , Animals , Behavior, Animal , Feeding Behavior/physiology , Neoptera/genetics , Neoptera/physiology , Reproduction/genetics
2.
Evolution ; 73(8): 1549-1563, 2019 08.
Article in English | MEDLINE | ID: mdl-31273777

ABSTRACT

Our understanding of the evolutionary stability of socially selected traits is dominated by sexual selection models originating with R. A. Fisher, in which genetic covariance arising through assortative mating can trigger exponential, runaway trait evolution. To examine whether nonreproductive, socially selected traits experience similar dynamics-social runaway-when assortative mating does not automatically generate a covariance, we modeled the evolution of socially selected badge and donation phenotypes incorporating indirect genetic effects (IGEs) arising from the social environment. We establish a social runaway criterion based on the interaction coefficient, ψ, which describes social effects on badge and donation traits. Our models make several predictions. (1) IGEs can drive the original evolution of altruistic interactions that depend on receiver badges. (2) Donation traits are more likely to be susceptible to IGEs than badge traits. (3) Runaway dynamics in nonsexual, social contexts can occur in the absence of a genetic covariance. (4) Traits elaborated by social runaway are more likely to involve reciprocal, but nonsymmetrical, social plasticity. Models incorporating plasticity to the social environment via IGEs illustrate conditions favoring social runaway, describe a mechanism underlying the origins of costly traits, such as altruism, and support a fundamental role for phenotypic plasticity in rapid social evolution.


Subject(s)
Biological Evolution , Phenotype , Selection, Genetic , Social Behavior , Animals , Models, Genetic
3.
Science ; 363(6427): 593, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30733410
4.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28701555

ABSTRACT

Studies on the evolution of cooperative behaviour are typically confined to understanding its adaptive value. It is equally essential, however, to understand its potential to evolve, requiring knowledge about the phenotypic consistency and genetic basis of cooperative behaviour. While previous observational studies reported considerably high heritabilities of helping behaviour in cooperatively breeding vertebrates, experimental studies disentangling the relevant genetic and non-genetic components of cooperative behaviour are lacking. In a half-sibling breeding experiment, we investigated the repeatability and heritability of three major helping behaviours performed by subordinates of the cooperatively breeding fish Neolamprologus pulcher To experimentally manipulate the amount of help needed in a territory, we raised the fish in two environments differing in egg predation risk. All three helping behaviours were significantly repeatable, but had very low heritabilities. The high within-individual consistencies were predominantly due to maternal and permanent environment effects. The perceived egg predation risk had no effect on helping, but social interactions significantly influenced helping propensities. Our results reveal that developmentally plastic adjustments of provided help to social context shape cooperative phenotypes, whereas heritable genetic variation plays a minor role.


Subject(s)
Behavior, Animal , Cichlids/physiology , Cooperative Behavior , Helping Behavior , Animals , Breeding , Cichlids/genetics , Female , Genetic Variation , Social Environment
5.
Proc Biol Sci ; 283(1828)2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27053749

ABSTRACT

Maternal effects can induce adjustments in offspring phenotype to the environment experienced by the mother. Of particular interest is if mothers can programme their offspring to cope best under matching environmental conditions, but the evidence for such anticipatory maternal effects (AME) is limited. In this study, we manipulated experimentally the food availability experienced by mothers and their offspring in the European earwig (Forficula auricularia). Offspring produced by females that had access to high or low food quantities were cross-fostered to foster mothers experiencing matched or mismatched environments. Offspring experiencing food availability matching the one of their mothers had an increased survival to adulthood compared with offspring experiencing mismatched conditions. Females experiencing high food laid larger clutches. This clutch-size adjustment statistically explained the matching effect when offspring experienced high food, but not when experiencing low food conditions. There were no effects of matching on offspring growth and developmental rate. Overall, our study demonstrates that AME occurs in relation to food availability enhancing offspring survival to adulthood under matching food conditions.


Subject(s)
Insecta/physiology , Animals , Clutch Size , Diet , Environment , Female , Insecta/growth & development , Maternal Behavior , Nymph/growth & development , Nymph/physiology , Random Allocation , Reproduction
6.
Nat Commun ; 6: 6850, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25880586

ABSTRACT

The genetic conflict between parents and their offspring is a cornerstone of kin selection theory and the gene-centred view of evolution, but whether it actually occurs in natural systems remains an open question. Conflict operates only if parenting is driven by genetic trade-offs between offspring performance and the parent's ability to raise additional offspring, and its expression critically depends on the shape of these trade-offs. Here we investigate the occurrence and nature of genetic conflict in an insect with maternal care, the earwig Forficula auricularia. Specifically, we test for a direct response to experimental selection on female future reproduction and correlated responses in current offspring survival, developmental rate and growth. The results demonstrate genetic trade-offs that differ in shape before and after hatching. Our study not only provides direct evidence for parent-offspring conflict but also highlights that conflict is not inevitable and critically depends on the genetic trade-offs shaping parental investment.


Subject(s)
Behavior, Animal , Insecta , Maternal Behavior , Reproduction , Selection, Genetic , Animals , Evolution, Molecular , Female , Male
7.
Proc Biol Sci ; 281(1793)2014 10 22.
Article in English | MEDLINE | ID: mdl-25165768

ABSTRACT

Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues.


Subject(s)
Animal Communication , Cues , Hydrocarbons/chemistry , Insecta/physiology , Animals , Female , Inbreeding , Insecta/genetics , Male , Maternal Behavior , Reproduction , Social Behavior , Time Factors
8.
Behav Processes ; 106: 98-106, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24814909

ABSTRACT

Scent-marking is widespread among mammals and has been observed in many felid species. Although the behaviour is well-described, little is known about its function in wild felid populations. We investigated patterns of scent-marking and its role in intra- and intersexual communication among resident and non-resident Eurasian lynx Lynx lynx by observing interactions among wild lynx at natural marking sites by means of infrared camera traps. Marking activity of resident animals showed a peak during the mating season and was lowest during the time when females gave birth and lactated. Both sexes scent-marked, but male lynx visited marking sites much more often than females and marked relatively more often when visiting a site. Most visits to marking sites were by residents but we also observed scent-marking by non-residents. Juveniles were never observed marking. We found no evidence of lynx regularly renewing scent-marks after a certain 'expiry date' but the presence of a strange scent-mark triggered over-marking. Males responded similarly to the presence of another individual's scent-mark, irrespective of whether it was the top- or the underlying scent-mark in a mixture of scent-marks they encountered. Our results suggest that marking sites could serve as 'chemical bulletin boards', where male lynx advertise their presence and gain information on ownership relationships in a given area. Females placed their urine marks on top of the ones left by resident males, but further studies are needed to explain the functions of over-marking in females.


Subject(s)
Animal Communication , Lynx/physiology , Pheromones , Sexual Behavior, Animal/physiology , Social Behavior , Animals , Female , Male
9.
PLoS One ; 9(4): e94098, 2014.
Article in English | MEDLINE | ID: mdl-24722757

ABSTRACT

BACKGROUND: The European earwig (Forficula auricularia) is an established system for studies of sexual selection, social interactions and the evolution of parental care. Despite its scientific interest, little knowledge exists about the species at the genomic level, limiting the scope of molecular studies and expression analyses of genes of interest. To overcome these limitations, we sequenced and validated the transcriptome of the European earwig. METHODOLOGY AND PRINCIPAL FINDINGS: To obtain a comprehensive transcriptome, we sequenced mRNA from various tissues and developmental stages of female and male earwigs using Roche 454 pyrosequencing and Illumina HiSeq. The reads were de novo assembled independently and screened for possible microbial contamination and repeated elements. The remaining contigs were combined into a hybrid assembly and clustered to reduce redundancy. A comparison with the eukaryotic core gene dataset indicates that we sequenced a substantial part of the earwig transcriptome with a low level of fragmentation. In addition, a comparative analysis revealed that more than 8,800 contigs of the hybrid assembly show significant similarity to insect-specific proteins and those were assigned for Gene Ontology terms. Finally, we established a quantitative PCR test for expression stability using commonly used housekeeping genes and applied the method to five homologs of known sex-biased genes of the honeybee. The qPCR pilot study confirmed sex specific expression and also revealed significant expression differences between the brain and antenna tissue samples. CONCLUSIONS: By employing two different sequencing approaches and including samples obtained from different tissues, developmental stages, and sexes, we were able to assemble a comprehensive transcriptome of F. auricularia. The transcriptome presented here offers new opportunities to study the molecular bases and evolution of parental care and sociality in arthropods.


Subject(s)
Orthoptera/genetics , Orthoptera/metabolism , Transcriptome , Animals , Arthropod Antennae/metabolism , Bees/genetics , Brain/metabolism , Cluster Analysis , Contig Mapping/methods , DNA Transposable Elements , Databases, Factual , Female , Gene Expression Profiling , Gene Expression Regulation , Genomics , Male , Polymerase Chain Reaction , Species Specificity
10.
Am Nat ; 183(4): 547-57, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24642498

ABSTRACT

The evolutionary transition from solitary to social life is driven by direct and indirect fitness benefits of social interactions. Understanding the conditions promoting the early evolution of social life therefore requires identification of these benefits in nonderived social systems, such as animal families where offspring are mobile and able to disperse and will survive independently. Family life is well known to provide benefits to offspring through parental care, but research on sibling interactions generally focused on fitness costs to offspring due to competitive behaviors. Here we show experimentally that sibling interactions also reflect cooperative behaviors in the form of food sharing in nonderived families of the European earwig, Forficula auricularia. Food ingested by individual offspring was transferred to their siblings through mouth-to-anus contacts and active allo-coprophagy. These transfers occurred in both the presence and the absence of the tending mothers, even though the direct contact with the mothers limited sibling food sharing. Neither food deprivation or relatedness influenced the total amount of transferred food, but relatedness affected frass release and the behavioral mechanisms mediating food sharing. Related offspring obtained food predominately through allo-coprophagy, whereas unrelated offspring obtained food through mouth-to-anus contacts. Overall, this study emphasizes that sibling cooperation may be a key process promoting the early evolution of social life.


Subject(s)
Biological Evolution , Insecta/genetics , Social Behavior , Animals , Coprophagia , Female , Male , Nymph
11.
PLoS One ; 9(1): e87214, 2014.
Article in English | MEDLINE | ID: mdl-24498046

ABSTRACT

The evolution of parent-offspring communication was mostly studied from the perspective of parents responding to begging signals conveying information about offspring condition. Parents should respond to begging because of the differential fitness returns obtained from their investment in offspring that differ in condition. For analogous reasons, offspring should adjust their behavior to cues/signals of parental condition: parents that differ in condition pay differential costs of care and, hence, should provide different amounts of food. In this study, we experimentally tested in the European earwig (Forficula auricularia) if cues of maternal condition affect offspring behavior in terms of sibling cannibalism. We experimentally manipulated female condition by providing them with different amounts of food, kept nymph condition constant, allowed for nymph exposure to chemical maternal cues over extended time, quantified nymph survival (deaths being due to cannibalism) and extracted and analyzed the females' cuticular hydrocarbons (CHC). Nymph survival was significantly affected by chemical cues of maternal condition, and this effect depended on the timing of breeding. Cues of poor maternal condition enhanced nymph survival in early broods, but reduced nymph survival in late broods, and vice versa for cues of good condition. Furthermore, female condition affected the quantitative composition of their CHC profile which in turn predicted nymph survival patterns. Thus, earwig offspring are sensitive to chemical cues of maternal condition and nymphs from early and late broods show opposite reactions to the same chemical cues. Together with former evidence on maternal sensitivities to condition-dependent nymph chemical cues, our study shows context-dependent reciprocal information exchange about condition between earwig mothers and their offspring, potentially mediated by cuticular hydrocarbons.


Subject(s)
Behavior, Animal/physiology , Insecta/genetics , Maternal Behavior/physiology , Animal Communication , Animals , Cannibalism , Cues , Female , Male , Nymph/physiology , Siblings
12.
Evolution ; 67(11): 3208-20, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24152003

ABSTRACT

Families with parental care show a parent-offspring conflict over the amount of parental investment. To date, the resolution of this conflict was modeled as being driven by either purely within-brood or between-brood competition. In reality the partitioning of parental resources within- versus between-broods is an evolving life history trait, which can be affected by parent-offspring interactions. This coevolutionary feedback between life history and family interactions may influence the evolutionary process and outcome of parent-offspring coadaptation. We used a genetic framework for a simulation model where we allowed parental parity to coevolve with traits that determine parental investment. The model included unlinked loci for clutch size, parental sensitivity, baseline provisioning, and offspring begging. The simulation showed that tight coadaptation of parent and offspring traits only occurred in iteroparous outcomes whereas semelparous outcomes were characterized by weak coadaptation. When genetic variation in clutch size was unrestricted in the ancestral population, semelparity and maximal begging with poor coadaptation evolved throughout. Conversely, when genetic variation was limited to iteroparous conditions, and/or when parental sensitivity was treated as an evolutionarily fixed sensory bias, coadapted outcomes were more likely. Our findings show the influence of a feedback between parity, coadaptation, and conflict on the evolution of parent-offspring interactions.


Subject(s)
Biological Evolution , Maternal Behavior , Paternal Behavior , Animals , Computer Simulation , Conflict, Psychological , Female , Genetic Variation , Models, Biological , Reproduction
13.
Proc Biol Sci ; 279(1749): 4914-22, 2012 Dec 22.
Article in English | MEDLINE | ID: mdl-23097505

ABSTRACT

Social structures such as families emerge as outcomes of behavioural interactions among individuals, and can evolve over time if families with particular types of social structures tend to leave more individuals in subsequent generations. The social behaviour of interacting individuals is typically analysed as a series of multiple dyadic (pair-wise) interactions, rather than a network of interactions among multiple individuals. However, in species where parents feed dependant young, interactions within families nearly always involve more than two individuals simultaneously. Such social networks of interactions at least partly reflect conflicts of interest over the provision of costly parental investment. Consequently, variation in family network structure reflects variation in how conflicts of interest are resolved among family members. Despite its importance in understanding the evolution of emergent properties of social organization such as family life and cooperation, nothing is currently known about how selection acts on the structure of social networks. Here, we show that the social network structure of broods of begging nestling great tits Parus major predicts fitness in families. Although selection at the level of the individual favours large nestlings, selection at the level of the kin-group primarily favours families that resolve conflicts most effectively.


Subject(s)
Genetic Fitness , Social Behavior , Songbirds/physiology , Animals , Female , Hunger , Male , Motivation , Reproduction , Sex Factors , Songbirds/genetics , Switzerland
14.
Proc Biol Sci ; 279(1744): 3981-8, 2012 Oct 07.
Article in English | MEDLINE | ID: mdl-22810433

ABSTRACT

The family is an arena for conflicts between offspring, mothers and fathers that need resolving to promote the evolution of parental care and the maintenance of family life. Co-adaptation is known to contribute to the resolution of parent-offspring conflict over parental care by selecting for combinations of offspring demand and parental supply that match to maximize the fitness of family members. However, multiple paternity and differences in the level of care provided by mothers and fathers can generate antagonistic selection on offspring demand (mediated, for example, by genomic imprinting) and possibly hamper co-adaptation. While parent-offspring co-adaptation and parental antagonism are commonly considered two major processes in the evolution of family life, their co-occurrence and the evolutionary consequences of their joint action are poorly understood. Here, we demonstrate the simultaneous and entangled effects of these two processes on outcomes of family interactions, using a series of breeding experiments in the European earwig, Forficula auricularia, an insect species with uniparental female care. As predicted from parental antagonism, we show that paternally inherited effects expressed in offspring influence both maternal care and maternal investment in future reproduction. However, and as expected from the entangled effects of parental antagonism and co-adaptation, these effects critically depended on postnatal interactions with caring females and maternally inherited effects expressed in offspring. Our results demonstrate that parent-offspring co-adaptation and parental antagonism are entangled key drivers in the evolution of family life that cannot be fully understood in isolation.


Subject(s)
Adaptation, Biological , Insecta/physiology , Selection, Genetic , Animals , Biological Evolution , Crosses, Genetic , Female , Insecta/genetics , Male , Maternal Behavior , Reproduction
15.
Biol Lett ; 8(4): 547-50, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22535642

ABSTRACT

The aggregation of parents with offspring is generally associated with different forms of care that improve offspring survival at potential costs to parents. Under poor environments, the limited amount of resources available can increase the level of competition among family members and consequently lead to adaptive changes in parental investment. However, it remains unclear as to what extent such changes modify offspring fitness, particularly when offspring can survive without parents such as in the European earwig, Forficula auricularia. Here, we show that under food restriction, earwig maternal presence decreased offspring survival until adulthood by 43 per cent. This effect was independent of sibling competition and was expressed after separation from the female, indicating lasting detrimental effects. The reduced benefits of maternal presence on offspring survival were not associated with higher investment in future reproduction, suggesting a condition-dependent effect of food restriction on mothers and local mother-offspring competition for food. Overall, these findings demonstrate for the first time a long-term negative effect of maternal presence on offspring survival in a species with maternal care, and highlight the importance of food availability in the early evolution of family life.


Subject(s)
Feeding Behavior , Maternal Behavior , Orthoptera , Animals , Female , Clutch Size , Feeding Behavior/physiology , Food Deprivation/physiology , Linear Models , Maternal Behavior/physiology , Orthoptera/physiology , Reproduction , Species Specificity , Survival Analysis
16.
Biol Lett ; 7(3): 352-4, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21208942

ABSTRACT

Solicitation signals by offspring are well known to influence parental behaviour, and it is commonly assumed that this behavioural effect translates into an effect on residual reproduction of parents. However, this equivalence assumption concerning behavioural and reproductive effects caused by offspring signals remains largely untested. Here, we tested the effect of a chemical offspring signal of quality on the relative timing and amount of future reproduction in the European earwig (Forficula auricularia). We manipulated the nutritional condition of earwig nymphs and exposed females to their extract, or to solvent as a control. There were no significant main effects of exposure treatment on 2nd clutch production, but exposure to extracts of well-fed nymphs induced predictable timing of the 2nd relative to the 1st clutch. This result demonstrates for the first time that an offspring signal per se, in the absence of any maternal behaviour, affects maternal reproductive timing, possibly through an effect on maternal reproductive physiology.


Subject(s)
Animal Communication , Insecta/physiology , Maternal Behavior , Oviparity , Animals , Female , Hydrocarbons/chemistry , Insecta/chemistry , Male , Nymph/chemistry
17.
PLoS One ; 5(1): e8606, 2010 Jan 06.
Article in English | MEDLINE | ID: mdl-20066041

ABSTRACT

BACKGROUND: In species across taxa, offspring have means to influence parental investment (PI). PI thus evolves as an interacting phenotype and indirect genetic effects may strongly affect the co-evolutionary dynamics of offspring and parental behaviors. Evolutionary theory focused on explaining how exaggerated offspring solicitation can be understood as resolution of parent-offspring conflict, but the evolutionary origin and diversification of different forms of family interactions remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In contrast to previous theory that largely uses a static approach to predict how "offspring individuals" and "parental individuals" should interact given conflict over PI, we present a dynamic theoretical framework of antagonistic selection on the PI individuals obtain/take as offspring and the PI they provide as parents to maximize individual lifetime reproductive success; we analyze a deterministic and a stochastic version of this dynamic framework. We show that a zone for equivalent co-adaptation outcomes exists in which stable levels of PI can evolve and be maintained despite fast strategy transitions and ongoing co-evolutionary dynamics. Under antagonistic co-adaptation, cost-free solicitation can evolve as an adaptation to emerging preferences in parents. CONCLUSIONS/SIGNIFICANCE: We show that antagonistic selection across the offspring and parental life-stage of individuals favors co-adapted offspring and parental behavior within a zone of equivalent outcomes. This antagonistic parent-offspring co-adaptation does not require solicitation to be costly, allows for rapid divergence and evolutionary novelty and potentially explains the origin and diversification of the observed provisioning forms in family life.


Subject(s)
Adaptation, Physiological , Biological Evolution , Conflict, Psychological , Models, Theoretical , Stochastic Processes
18.
Proc Biol Sci ; 276(1668): 2847-53, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19439438

ABSTRACT

Begging signals of offspring are condition-dependent cues that are usually predicted to display information about the short-term need (i.e. hunger) to which parents respond by allocating more food. However, recent models and experiments have revealed that parents, depending on the species and context, may respond to signals of quality (i.e. offspring reproductive value) rather than need. Despite the critical importance of this distinction for life history and conflict resolution theory, there is still limited knowledge of alternative functions of offspring signals. In this study, we investigated the communication between offspring and caring females of the common earwig, Forficula auricularia, hypothesizing that offspring chemical cues display information about nutritional condition to which females respond in terms of maternal food provisioning. Consistent with the prediction for a signal of quality we found that mothers exposed to chemical cues from well-fed nymphs foraged significantly more and allocated food to more nymphs compared with females exposed to solvent (control) or chemical cues from poorly fed nymphs. Chemical analysis revealed significant differences in the relative quantities of specific cuticular hydrocarbon compounds between treatments. To our knowledge, this study demonstrates for the first time that an offspring chemical signal reflects nutritional quality and influences maternal care.


Subject(s)
Animal Communication , Insecta/physiology , Animals , Feeding Behavior , Female , Maternal Behavior , Nymph , Pheromones
19.
Proc Biol Sci ; 275(1645): 1823-30, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18460430

ABSTRACT

The evolution of the complex and dynamic behavioural interactions between caring parents and their dependent offspring is a major area of research in behavioural ecology and quantitative genetics. While behavioural ecologists examine the evolution of interactions between parents and offspring in the light of parent-offspring conflict and its resolution, quantitative geneticists explore the evolution of such interactions in the light of parent-offspring co-adaptation due to combined effects of parental and offspring behaviours on fitness. To date, there is little interaction or integration between these two fields. Here, we first review the merits and limitations of each of these two approaches and show that they provide important complementary insights into the evolution of strategies for offspring begging and parental resource provisioning. We then outline how central ideas from behavioural ecology and quantitative genetics can be combined within a framework based on the concept of behavioural reaction norms, which provides a common basis for behavioural ecologists and quantitative geneticists to study the evolution of parent-offspring interactions. Finally, we discuss how the behavioural reaction norm approach can be used to advance our understanding of parent-offspring conflict by combining information about the genetic basis of traits from quantitative genetics with key insights regarding the adaptive function and dynamic nature of parental and offspring behaviours from behavioural ecology.


Subject(s)
Behavior, Animal , Biological Evolution , Ecology , Genetics, Population , Adaptation, Biological , Animals
20.
Proc Biol Sci ; 273(1593): 1523-8, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16777747

ABSTRACT

The sensory modalities used for communication among family members have at least partly evolved within an organism's pre-existing sensory context. Given the well-known general importance of chemical communication in insects, we hypothesized in sub-social insects with parental care that chemical signals emitted by larvae to influence parental care (i.e. solicitation pheromones) would have evolved. To test this hypothesis, we performed an experiment in the burrower bug Sehirus cinctus (Hemiptera: Cydnidae) where nymphs were hand-reared under high- or low-food conditions. These hand-reared clutches were used as a source of volatiles. The volatiles were collected for chemical analysis and delivered to caring mothers to quantify their behavioural response. As predicted, mothers exposed to volatiles from nymphs in poor condition provisioned significantly more food than those exposed to air (controls) or volatiles from high-condition nymphs. Chemical analysis revealed that nymphs emitted a blend of eight compounds of which alpha-pinene and camphene showed the strongest relationship with food treatment. Exposure to pure synthetic alpha-pinene and camphene did not affect maternal provisioning, however, suggesting that the functional significance of alpha-pinene and/or camphene may occur in a blend with other compounds. This study shows a clear effect of condition-dependent offspring odours on maternal food provisioning and identifies, for the first time, candidate compounds for a potential chemical offspring begging signal.


Subject(s)
Animal Communication , Feeding Behavior , Heteroptera/physiology , Maternal Behavior , Pheromones/physiology , Animals , Female , Larva/physiology , Odorants , Pheromones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...