Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806468

ABSTRACT

The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.


Subject(s)
Organic Anion Transporters, Sodium-Dependent , Symporters , Bile Acids and Salts/metabolism , Chromatography, Liquid , Hepatitis B virus/genetics , Hepatitis Delta Virus/genetics , Humans , Liver/metabolism , Organic Anion Transporters, Sodium-Dependent/biosynthesis , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Peptides/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Symporters/biosynthesis , Symporters/genetics , Symporters/metabolism , Tandem Mass Spectrometry , Taurocholic Acid/metabolism
2.
Pharmaceutics ; 13(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802215

ABSTRACT

Remdesivir has been approved for treatment of COVID-19 and shortens the time to recovery in hospitalized patients. Drug transporters removing remdesivir from the circulation may reduce efficacy of treatment by lowering its plasma levels. Information on the interaction of remdesivir with drug transporters is limited. We therefore assessed remdesivir as substrate and inhibitor of the clinically relevant hepatic drug uptake transporters organic anion transporting poly-peptide (OATP)-1B1 (SLCO1B1), its common genetic variants OATP1B1*1b, OATP1B1*5, OATP1B1*15, as well as OATP1B3 (SLCO1B3), OATP2B1 (SLCO2B1) and organic cation transporter (OCT)-1 (SLC22A1). Previously established transporter-overexpressing cells were used to measure (i) cellular remdesivir uptake and (ii) cellular uptake of transporter probe substrates in the presence of remdesivir. There was a high remdesivir uptake into vector-transfected control cells. Moderate, but statistically significant higher uptake was detected only for OATP1B1-, OATP1B1*1b and OATP1B1*15-expressing cells when compared with control cells at 5 µM. Remdesivir inhibited all investigated transporters at 10 µM and above. In conclusion, the low uptake rates suggest that OATP1B1 and its genetic variants, OATP1B3, OATP2B1 and OCT1 are not relevant for hepatocellular uptake of remdesivir in humans. Due to the rapid clearance of remdesivir, no clinically relevant transporter-mediated drug-drug interactions are expected.

3.
Handb Exp Pharmacol ; 266: 81-100, 2021.
Article in English | MEDLINE | ID: mdl-33674913

ABSTRACT

Organic cation transporters (OCTs) of the solute carrier family (SLC) 22 are the subject of intensive research because they mediate the transport of many clinically-relevant drugs such as the antidiabetic agent metformin, the opioid tramadol, and the antimigraine agent sumatriptan. OCT1 (SLC22A1) and OCT2 (SLC22A2) are highly expressed in human liver and kidney, respectively, while OCT3 (SLC22A3) shows a broader tissue distribution. As suggested from studies using knockout mice, particularly OCT2 and OCT3 appear to be of relevance for brain physiological function and drug response. The knowledge of genetic factors and epigenetic modifications affecting function and expression of OCTs is important for a better understanding of disease mechanisms and for personalized treatment of patients. This review briefly summarizes the impact of genetic variants and epigenetic regulation of OCTs in general. A comprehensive overview is given on the consequences of OCT2 and OCT3 knockout in mice and the implications of genetic OCT2 and OCT3 variants on central nervous system function in humans.


Subject(s)
Metformin , Organic Cation Transport Proteins , Animals , Cations , Epigenesis, Genetic , Humans , Hypoglycemic Agents , Mice , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...