Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348829

ABSTRACT

Plant parasitic nematodes, including the beet cyst nematode Heterodera schachtii, constitute a devastating problem for crops worldwide. The limited availability of sustainable management options illustrates the need for new eco-friendly control means. Plant metabolites represent an invaluable source of active compounds for the discovery of such novel antagonistic agents. Here, we evaluated the impact of eight plant terpenoids on the H. schachtii parasitism of Arabidopsis thaliana. None of the metabolites affected the plant development (5 or 10 ppm). Nootkatone decreased the number of adult nematodes on A. thaliana to 50%, with the female nematodes being smaller compared to the control. In contrast, three other terpenoids increased the parasitism and/or female size. We discovered that nootkatone considerably decreased the number of nematodes that penetrated A. thaliana roots, but neither affected the nematode viability or attraction to plant roots, nor triggered the production of plant reactive oxygen species or changed the plant's sesquiterpene profile. However, we demonstrated that nootkatone led to a significant upregulation of defense-related genes involved in salicylic and jasmonic acid pathways. Our results indicate that nootkatone is a promising candidate to be developed into a novel plant protection agent acting as a stimulator of plant immunity against parasitic nematodes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Plant Diseases/immunology , Plant Immunity/drug effects , Plant Roots/immunology , Polycyclic Sesquiterpenes/pharmacology , Tylenchoidea/growth & development , Animals , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/parasitology , Arabidopsis Proteins/genetics , Female , Plant Diseases/parasitology , Plant Extracts/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/parasitology , Tylenchoidea/drug effects
2.
J Agric Food Chem ; 68(33): 8936-8941, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32806123

ABSTRACT

By means of ex vivo tissue deuterium-labeling using the stable isotope-labeled precursor [6,6,6-2H3]-(±)-mevalonolactone and microvinification experiments, we were able to show for the first time that the three sesquiterpene hydrocarbons, guaiazulene, δ-selinene, and selina-3,7(11)-diene, in Lemberger red wines do not originate from acid-catalyzed cyclization of yeast-derived farnesol and nerolidol. The three aforementioned sesquiterpene hydrocarbons could be unambiguously identified as grape-derived secondary metabolites and can therefore be considered as variety-specific marker compounds. The analysis of sesquiterpene hydrocarbons in red wine samples was performed by solid-phase extraction-headspace solid-phase microextraction-comprehensive two-dimensional gas chromatography-time of flight-mass spectrometry. The developed methodology paves the way for an analytical verification of grape variety labeling in wine authenticity control.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Sesquiterpenes/chemistry , Vitis/chemistry , Wine/analysis , Deuterium/chemistry , Fruit/chemistry , Gas Chromatography-Mass Spectrometry/instrumentation
3.
Beilstein J Org Chem ; 15: 1945-1961, 2019.
Article in English | MEDLINE | ID: mdl-31501661

ABSTRACT

Sesquiterpenes are structurally diverse, potent flavoring substances that significantly influence the aroma profile of grapes (Vitis vinifera L.) at the time of physiological ripening. To investigate these natural compounds, freshly harvested, ripe berries of the red wine variety Lemberger (Vitis vinifera subsp. vinifera L.) were analyzed using comprehensive two-dimensional gas chromatography (GC×GC) coupled to a time-of-flight mass spectrometer (TOF-MS) after headspace-solid phase microextraction (HS-SPME). The identification of structurally complex natural compounds, such as sesquiterpenes from fruits and vegetables, is often reported as "tentative", as authentic standards are not commercially available for most of the analytes. For this reason, feeding experiments (in vivo labeling) were carried out using the stable isotope-labeled precursors [5,5-2H2]-1-deoxy-ᴅ-xylulose (d 2-DOX) and [6,6,6-2H3]-(±)-mevalonolactone (d 3-MVL) to clearly identify the volatiles. Based on the recorded mass spectra of the unlabeled and deuterated compounds, mechanisms for sesquiterpene formation in V. vinifera could be proposed and already known pathways could be confirmed or disproved. For example, the HS-SPME-GC×GC-TOF-MS measurements of fed sample material showed that the tricyclic sesquiterpene hydrocarbons α-copaene, ß-copaene, α-cubebene, ß-cubebene and the bicyclic δ-cadinene were biosynthesized via (S)-(-)-germacrene D rather than via (R)-(+)-germacrene D as intermediate.

SELECTION OF CITATIONS
SEARCH DETAIL
...