Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 90(7): 1102-16, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20351695

ABSTRACT

CD24 is a small, highly glycosylated cell surface protein that is linked to the membrane through a glycosyl-phosphatidylinositol anchor. It is overexpressed in many human carcinomas and its expression is linked to bad prognosis. Lately, lack or low expression of CD24 was used to identify tumor stem cells resulting in conflicting data on the usefulness of this marker. In many immunohistochemical studies, the mAb SN3b was used but the epitope and specificity of this antibody have never been thoroughly investigated. In other studies based mainly on cytofluorographic analysis, the mAb ML-5 was applied. In this study, we compared the epitope of mAb SN3b to the CD24 mAbs SWA-11 and ML-5 that both bind to the core protein of CD24. Using tissue microarrays and affinity-purified CD24 glycoforms, we observed only a partial overlap of SN3b and SWA11 reactivity. The mAb SN3b recognizes sialic acid most likely on O-linked glycans that can occur independently of the CD24 protein backbone. The SN3b epitope was not related to common sialylated cancer-associated glycan structures. Both SN3b epitope positive or negative CD24 glycoforms supported the binding of P-selectin and Siglec-5. In breast cancer, the SN3b reactivity was associated with bad prognosis, whereas SWA11 was not. In renal cell cancer, the SN3b epitope was completely absent but SWA11 reactivity was a prognostic factor. Our results shed new light on the tumorbiological role of CD24 and resolve discrepancies in the literature related to the use of different CD24 mAbs.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity , Antigens, Tumor-Associated, Carbohydrate/immunology , CD24 Antigen/immunology , Carcinoma/diagnosis , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Breast Neoplasms/diagnosis , CD24 Antigen/metabolism , Cell Line, Tumor , Female , Humans , Kidney Neoplasms/diagnosis , Lectins/metabolism , Male , P-Selectin/metabolism , Prostatic Neoplasms/diagnosis
2.
Cancer Lett ; 278(1): 73-81, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19188015

ABSTRACT

Exosomes are membrane vesicles that are released from many different cell types. Tumor derived-exosomes play a role in immune suppression. We hypothesized that in ovarian carcinoma patients exosomes initially produced at the local abdominal site may become systemic. We examined paired samples of ascites and blood from ovarian carcinoma patients for the presence of exosomes. We also studied the requirements for exosomal uptake by immune cells, the role of phosphatidyl-serine (PS) as uptake signal and the effect of exosome application on tumor growth. We used exosomes from ovarian carcinoma cell lines, malignant ascites and sera from ovarian carcinoma patients isolated by ultracentrifugation. PS-displayed by exosomes was detected by Anexin-V-FITC staining of latex beads adsorbed exosomes. For uptake experiments, labeled exosomes were exposed to cells in the presence or absence of cold Annexin-V as competitor. Uptake was examined by fluorescent microscopy and cytofluorographic analysis. Effects of exosomes on tumor growth were studied using SKOV3ip ovarian carcinoma cells in CD1 nu/nu mice. We found that malignant ascites-derived exosomes cargo tumor progression related proteins such as L1CAM, CD24, ADAM10, and EMMPRIN. We observed that exosomes become systemic via the blood stream. Uptake of ovarian carcinoma exosomes by NK cells was found to require PS at the exosomal surface but the presence of PS was not sufficient. Application of malignant ascites-derived exosomes to tumor bearing mice resulted in augmented tumor growth. Exosomes from the serum of tumor patients could be isolated from only one ml of blood and this analysis could serve for diagnostic purposes. We propose that tumor-derived exosomes could play a role in tumor progression.


Subject(s)
Exosomes/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Animals , Ascites/pathology , Cell Division/physiology , Cell Line, Tumor , Disease Progression , Exosomes/immunology , Female , Humans , Killer Cells, Natural/immunology , Mice , Mice, Nude , Neoplasm Transplantation , Ovarian Neoplasms/immunology , Phosphatidylserines/physiology , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...