Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Plant Physiol ; 193(3): 1772-1796, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37310689

ABSTRACT

In Chlamydomonas (Chlamydomonas reinhardtii), the VESICLE-INDUCING PROTEIN IN PLASTIDS 1 and 2 (VIPP1 and VIPP2) play roles in the sensing and coping with membrane stress and in thylakoid membrane biogenesis. To gain more insight into these processes, we aimed to identify proteins interacting with VIPP1/2 in the chloroplast and chose proximity labeling (PL) for this purpose. We used the transient interaction between the nucleotide exchange factor CHLOROPLAST GRPE HOMOLOG 1 (CGE1) and the stromal HEAT SHOCK PROTEIN 70B (HSP70B) as test system. While PL with APEX2 and BioID proved to be inefficient, TurboID resulted in substantial biotinylation in vivo. TurboID-mediated PL with VIPP1/2 as baits under ambient and H2O2 stress conditions confirmed known interactions of VIPP1 with VIPP2, HSP70B, and the CHLOROPLAST DNAJ HOMOLOG 2 (CDJ2). Proteins identified in the VIPP1/2 proxiomes can be grouped into proteins involved in the biogenesis of thylakoid membrane complexes and the regulation of photosynthetic electron transport, including PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1). A third group comprises 11 proteins of unknown function whose genes are upregulated under chloroplast stress conditions. We named them VIPP PROXIMITY LABELING (VPL). In reciprocal experiments, we confirmed VIPP1 in the proxiomes of VPL2 and PGRL1. Our results demonstrate the robustness of TurboID-mediated PL for studying protein interaction networks in the chloroplast of Chlamydomonas and pave the way for analyzing functions of VIPPs in thylakoid biogenesis and stress responses.


Subject(s)
Chlamydomonas , Thylakoids , Thylakoids/metabolism , Chlamydomonas/genetics , Chlamydomonas/metabolism , Hydrogen Peroxide/metabolism , Membrane Proteins/metabolism , Chloroplasts/metabolism
2.
J Vis Exp ; (141)2018 11 20.
Article in English | MEDLINE | ID: mdl-30531724

ABSTRACT

We demonstrate interferometric scattering (iSCAT) microscopy, a method capable of detecting single unlabeled proteins secreted from individual living cells in real time. In this protocol, we cover the fundamental steps to realize an iSCAT microscope and complement it with additional imaging channels to monitor the viability of a cell under study. Following this, we use the method for real-time detection of single proteins as they are secreted from a living cell which we demonstrate with an immortalized B-cell line (Laz388). Necessary steps concerning the preparation of microscope and sample as well as the analysis of the recorded data are discussed. The video protocol demonstrates that iSCAT microscopy offers a straightforward method to study secretion at the single-molecule level.


Subject(s)
B-Lymphocytes/chemistry , Cell Tracking/methods , Molecular Imaging/methods , Proteins/analysis , B-Lymphocytes/metabolism , Cell Line, Transformed , Humans , Interferometry/methods , Microscopy/methods , Nanotechnology/methods , Proteins/metabolism
3.
Clin Cancer Res ; 24(13): 3087-3096, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29615460

ABSTRACT

Purpose:KEAP1 and NFE2L2 mutations are associated with impaired prognosis in a variety of cancers and with squamous cell carcinoma formation in non-small cell lung cancer (NSCLC). However, little is known about frequency, histology dependence, molecular and clinical presentation as well as response to systemic treatment in NSCLC.Experimental Design: Tumor tissue of 1,391 patients with NSCLC was analyzed using next-generation sequencing (NGS). Clinical and pathologic characteristics, survival, and treatment outcome of patients with KEAP1 or NFE2L2 mutations were assessed.Results:KEAP1 mutations occurred with a frequency of 11.3% (n = 157) and NFE2L2 mutations with a frequency of 3.5% (n = 49) in NSCLC patients. In the vast majority of patients, both mutations did not occur simultaneously. KEAP1 mutations were found mainly in adenocarcinoma (AD; 72%), while NFE2L2 mutations were more common in squamous cell carcinoma (LSCC; 59%). KEAP1 mutations were spread over the whole protein, whereas NFE2L2 mutations were clustered in specific hotspot regions. In over 80% of the patients both mutations co-occurred with other cancer-related mutations, among them also targetable aberrations like activating EGFR mutations or MET amplification. Both patient groups showed different patterns of metastases, stage distribution and performance state. No patient with KEAP1 mutation had a response on systemic treatment in first-, second-, or third-line setting. Of NFE2L2-mutated patients, none responded to second- or third-line therapy.Conclusions:KEAP1- and NFE2L2-mutated NSCLC patients represent a highly heterogeneous patient cohort. Both are associated with different histologies and usually are found together with other cancer-related, partly targetable, genetic aberrations. In addition, both markers seem to be predictive for chemotherapy resistance. Clin Cancer Res; 24(13); 3087-96. ©2018 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Kelch-Like ECH-Associated Protein 1/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , NF-E2-Related Factor 2/genetics , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Cell Line, Tumor , Female , Genetic Association Studies , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Male , NF-E2-Related Factor 2/metabolism , Neoplasm Grading , Neoplasm Staging , Prognosis , Protein Kinase Inhibitors/therapeutic use
4.
Oncogene ; 37(20): 2746-2756, 2018 05.
Article in English | MEDLINE | ID: mdl-29503447

ABSTRACT

LIN28B is a RNA-binding protein regulating predominantly let-7 microRNAs with essential functions in inflammation, wound healing, embryonic stem cells, and cancer. LIN28B expression is associated with tumor initiation, progression, resistance, and poor outcome in several solid cancers, including lung cancer. However, the functional role of LIN28B, especially in non-small cell lung adenocarcinomas, remains elusive. Here, we investigated the effects of LIN28B expression on lung tumorigenesis using LIN28B transgenic overexpression in an autochthonous KRASG12V-driven mouse model. We found that LIN28B overexpression significantly increased the number of CD44+/CD326+ tumor cells, upregulated VEGF-A and miR-21 and promoted tumor angiogenesis and epithelial-to-mesenchymal transition (EMT) accompanied by enhanced AKT phosphorylation and nuclear translocation of c-MYC. Moreover, LIN28B accelerated tumor initiation and enhanced proliferation which led to a shortened overall survival. In addition, we analyzed lung adenocarcinomas of the Cancer Genome Atlas (TCGA) and found LIN28B expression in 24% of KRAS-mutated cases, which underscore the relevance of our model.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , RNA-Binding Proteins/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Epithelial Cell Adhesion Molecule/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/metabolism , Lung Neoplasms/genetics , Mice , Mice, Transgenic , Neoplasms, Experimental/genetics , Survival Analysis
5.
Physiol Plant ; 162(3): 262-273, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28984358

ABSTRACT

Retrograde signals from the chloroplast control expression of nuclear genes. A large fraction of these genes is affected rapidly upon light intensity shifts. This study was designed to address the interdependence of signaling pathways involved in the rapid high light response and redox and reactive oxygen species signaling by exploiting the glutathione and ascorbate deficient mutants pad2 and vtc1. In the first set of experiments the transcriptional response of the two transcription factors ERF6 and ERF105 that had previously been shown to rapidly respond to light was shown to be deregulated in the pad2 mutant but not in the vtc1 background. The transcriptional response after combining the low-to-high light transfer with methylviologen pretreatment further demonstrated the significance of glutathione in strongly modulating the retrograde response. Transcripts encoding small heat shock proteins (HSP17.4, HSP176a, HSP20-like1 and HSP20-like2) and the lipid transfer protein LTP3 were taken as markers responding to the combinatorial treatment in wild type, and most strongly in pad2 in high light or upon methylviologen treatment. A correlation with H2 O2 accumulation was not observed. It is concluded that glutathione-dependent processes participate in light-triggered rapid gene regulation independent on cellular H2 O2 .


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/radiation effects , Ascorbic Acid/metabolism , Glutathione/metabolism , Light , Plant Leaves/radiation effects , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant/radiation effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Mutation , Plant Leaves/genetics , Plant Leaves/metabolism , Signal Transduction/genetics , Signal Transduction/radiation effects
6.
Nano Lett ; 18(1): 513-519, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29227108

ABSTRACT

Cellular secretion of proteins into the extracellular environment is an essential mediator of critical biological mechanisms, including cell-to-cell communication, immunological response, targeted delivery, and differentiation. Here, we report a novel methodology that allows for the real-time detection and imaging of single unlabeled proteins that are secreted from individual living cells. This is accomplished via interferometric detection of scattered light (iSCAT) and is demonstrated with Laz388 cells, an Epstein-Barr virus (EBV)-transformed B cell line. We find that single Laz388 cells actively secrete IgG antibodies at a rate of the order of 100 molecules per second. Intriguingly, we also find that other proteins and particles spanning ca. 100 kDa-1 MDa are secreted from the Laz388 cells in tandem with IgG antibody release, likely arising from EBV-related viral proteins. The technique is general and, as we show, can also be applied to studying the lysate of a single cell. Our results establish label-free iSCAT imaging as a powerful tool for studying the real-time exchange between cells and their immediate environment with single-protein sensitivity.


Subject(s)
B-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Immunoglobulin G/analysis , Single-Cell Analysis/methods , B-Lymphocytes/virology , Cell Line , Herpesvirus 4, Human/isolation & purification , Humans , Immunoglobulin G/immunology , Light , Microscopy, Interference/methods , Optical Imaging/methods , Scattering, Radiation
7.
Endocrine ; 54(3): 733-741, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27696251

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer with a median survival of 4-6 months. Identification of mutations contributing to aberrant activation of signaling cascades in ATC may provide novel opportunities for targeted therapy. Thirty-nine ATC samples were studied by next-generation sequencing (NGS) with an established gene panel. High quality readout was obtained in 30/39 ATC. Twenty-eight ATC harbored a mutation in at least one of the studied genes: TP53 (18/30), NF1 (11/30), ALK (6/30), NRAS (4/30), ATRX (3/30), BRAF (2/30), HRAS (2/30), KRAS (1/30). In 17/30 ATC (54 %) mutations were found in two or more genes. Twenty-one of the identified variants are listed in COSMIC as somatic mutations reported in other cancer entities. In three ATC samples no mutations were detected and none of the ATCs was positive for BRAFV600E. The most frequent mutations were found in TP53 (60 %), followed by NF1 (37 %). ALK mutations were detected in 20 % of ATC and were more frequent than RAS or BRAF mutations. ATRX mutations were identified in 10 % of the ATC samples. These sequencing data from 30 ATC samples demonstrate the accumulation of genetic alterations in ATC because in 90 % of samples mutations were already found in the investigated nine genes alone. Mutations were found with high prevalence in established tumor suppressor and oncogenes in ATC, such as TP53 and H/K/NRAS, but also, although less frequent, in genes that may harbor the potential for targeted treatment in a subset of ATC patients, such as ALK and NF1.


Subject(s)
Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/genetics , Aged , Aged, 80 and over , Anaplastic Lymphoma Kinase , DNA Mutational Analysis , Female , Genes, Neurofibromatosis 1 , Genes, p53 , Genes, ras , Humans , Male , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Receptor Protein-Tyrosine Kinases/genetics
8.
Clin Cancer Res ; 22(19): 4837-4847, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27252416

ABSTRACT

PURPOSE: To identify novel mechanisms of resistance to third-generation EGFR inhibitors in patients with lung adenocarcinoma that progressed under therapy with either AZD9291 or rociletinib (CO-1686). EXPERIMENTAL DESIGN: We analyzed tumor biopsies from seven patients obtained before, during, and/or after treatment with AZD9291 or rociletinib (CO-1686). Targeted sequencing and FISH analyses were performed, and the relevance of candidate genes was functionally assessed in in vitro models. RESULTS: We found recurrent amplification of either MET or ERBB2 in tumors that were resistant or developed resistance to third-generation EGFR inhibitors and show that ERBB2 and MET activation can confer resistance to these compounds. Furthermore, we identified a KRASG12S mutation in a patient with acquired resistance to AZD9291 as a potential driver of acquired resistance. Finally, we show that dual inhibition of EGFR/MEK might be a viable strategy to overcome resistance in EGFR-mutant cells expressing mutant KRAS CONCLUSIONS: Our data suggest that heterogeneous mechanisms of resistance can drive primary and acquired resistance to third-generation EGFR inhibitors and provide a rationale for potential combination strategies. Clin Cancer Res; 22(19); 4837-47. ©2016 AACR.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Acrylamides/therapeutic use , Adenocarcinoma of Lung , Aged , Aniline Compounds/therapeutic use , ErbB Receptors/antagonists & inhibitors , Female , Humans , Male , Middle Aged , Pyrimidines/therapeutic use
9.
Int J Cancer ; 138(4): 927-38, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26340530

ABSTRACT

Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non-small cell tumors and secondary transitions from non-small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of "small cell-ness" based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT-signaling in the context of mutual bi-allelic RB1 and TP53 lesions. Additionally, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH-ASCL1-RB-p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon-based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA Mutational Analysis , Flow Cytometry , Fluorescent Antibody Technique , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Receptors, Notch/genetics , Receptors, Notch/metabolism , Retinoblastoma Protein/genetics , Transfection , Tumor Suppressor Protein p53/genetics
10.
Exp Mol Pathol ; 99(3): 682-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26546837

ABSTRACT

Small cell lung carcinoma (SCLC) is the most aggressive entity of lung cancer. Rapid cancer progression and early formation of systemic metastases drive the deadly outcome of SCLC. Recent advances in identifying oncogenes by cancer whole genome sequencing improved the understanding of SCLC carcinogenesis. However, tumor material is often limited in the clinic. Thus, it is a compulsive issue to improve SCLC diagnostics by combining established immunohistochemistry and next generation sequencing. We implemented amplicon-based next generation deep sequencing in our routine diagnostics pipeline to analyze RB1, TP53, EP300 and CREBBP, frequently mutated in SCLC. Thereby, our pipeline combined routine SCLC histology and identification of somatic mutations. We comprehensively analyzed fifty randomly collected SCLC metastases isolated from trachea and lymph nodes in comparison to specimens derived from primary SCLC. SCLC lymph node metastases showed enhanced proliferation and frequently a collapsed keratin cytoskeleton compared to SCLC metastases isolated from trachea. We identified characteristic synchronous mutations in RB1 and TP53 and non-synchronous CREBBP and EP300 mutations. Our data showed the benefit of implementing deep sequencing into routine diagnostics. We here identify oncogenic drivers and simultaneously gain further insights into SCLC tumor biology.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Lung Neoplasms/genetics , Neoplasm Metastasis/genetics , Small Cell Lung Carcinoma/genetics , Humans , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Small Cell Lung Carcinoma/pathology
11.
Oncol Res Treat ; 38(11): 560-9, 2015.
Article in English | MEDLINE | ID: mdl-26599269

ABSTRACT

BACKGROUND: The role of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in the treatment of patients with advanced non-small cell lung cancer (NSCLC) and unknown EGFR mutation status has recently been questioned. PATIENTS AND METHODS: We conducted a retrospective study of patients with unknown EGFR mutation status and long-term response (LTR) to gefitinib in the Swiss Iressa expanded access program (EAP). We assessed patient characteristics, and performed Sanger sequencing and next generation sequencing on archived tumor tissue. We hypothesized that EGFR mutations are prevalent in patients with LTR. RESULTS: Of 430 patients in the EAP, 18 (4%) fulfilled our definition of LTR, and 16 of them had archived tumor tissue. Patient characteristics were as expected for age, sex, and smoking history. Median duration of therapy was 38 months (range 24-142 months). Sanger sequencing revealed EGFR exon 18-21 mutations in 6 (38%) of the tumors. Next generation sequencing revealed no further EGFR-mutated cases, but reported in 15 (94%) of the tumors mutations in other genes (ALK, BRAF, DDR2, KEAP1, MET, PTEN, STK11) previously associated with NSCLC. CONCLUSION: Larger studies are needed to define the prognostic values of different driver mutations in patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Quinazolines/therapeutic use , Adult , Age Distribution , Aged , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/epidemiology , DNA Mutational Analysis/methods , Female , Gefitinib , Gene Expression Profiling/methods , Genetic Markers/genetics , Humans , Longitudinal Studies , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Prevalence , Retrospective Studies , Risk Factors , Sex Distribution , Smoking/epidemiology , Switzerland/epidemiology , Treatment Outcome
12.
Oncotarget ; 6(36): 38458-68, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26540572

ABSTRACT

Treatment with EGFR kinase inhibitors improves progression-free survival of patients with EGFR-mutant lung cancer. However, all patients with initial response will eventually acquire resistance and die from tumor recurrence. We found that intermittent high-dose treatment with erlotinib induced apoptosis more potently and improved tumor shrinkage significantly than the established low doses. In mice carrying EGFR-mutant xenografts intermittent high-dose treatment (200 mg/kg every other day) was tolerable and prolonged progression-free survival and reduced the frequency of acquired resistance. Intermittent EGFR-targeted high-dose schedules induce more profound as well as sustained target inhibition and may afford enhanced therapeutic efficacy.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Erlotinib Hydrochloride/administration & dosage , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Animals , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Disease-Free Survival , Dose-Response Relationship, Drug , Drug Administration Schedule , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Mice, Nude , Xenograft Model Antitumor Assays
13.
J Thorac Oncol ; 10(7): 1049-57, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26102443

ABSTRACT

INTRODUCTION: The Network Genomic Medicine Lung Cancer was set up to rapidly translate scientific advances into early clinical trials of targeted therapies in lung cancer performing molecular analyses of more than 3500 patients annually. Because sequential analysis of the relevant driver mutations on fixated samples is challenging in terms of workload, tissue availability, and cost, we established multiplex parallel sequencing in routine diagnostics. The aim was to analyze all therapeutically relevant mutations in lung cancer samples in a high-throughput fashion while significantly reducing turnaround time and amount of input DNA compared with conventional dideoxy sequencing of single polymerase chain reaction amplicons. METHODS: In this study, we demonstrate the feasibility of a 102 amplicon multiplex polymerase chain reaction followed by sequencing on an Illumina sequencer on formalin-fixed paraffin-embedded tissue in routine diagnostics. Analysis of a validation cohort of 180 samples showed this approach to require significantly less input material and to be more reliable, robust, and cost-effective than conventional dideoxy sequencing. Subsequently, 2657 lung cancer patients were analyzed. RESULTS: We observed that comprehensive biomarker testing provided novel information in addition to histological diagnosis and clinical staging. In 2657 consecutively analyzed lung cancer samples, we identified driver mutations at the expected prevalence. Furthermore we found potentially targetable DDR2 mutations at a frequency of 3% in both adenocarcinomas and squamous cell carcinomas. CONCLUSION: Overall, our data demonstrate the utility of systematic sequencing analysis in a clinical routine setting and highlight the dramatic impact of such an approach on the availability of therapeutic strategies for the targeted treatment of individual cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Cohort Studies , DNA, Neoplasm/analysis , DNA, Neoplasm/genetics , DNA, Neoplasm/isolation & purification , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods
15.
Oncotarget ; 6(2): 1315-26, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25473901

ABSTRACT

BACKGROUND: Somatic mutations of the PIK3CA gene have been described in non-small cell lung cancer (NSCLC), but limited data is available on their biological relevance. This study was performed to characterize PIK3CA-mutated NSCLC clinically and genetically. PATIENTS AND METHODS: Tumor tissue collected consecutively from 1144 NSCLC patients within a molecular screening network between March 2010 and March 2012 was analyzed for PIK3CA mutations using dideoxy-sequencing and next-generation sequencing (NGS). Clinical, pathological, and genetic characteristics of PIK3CA-mutated patients are described and compared with a control group of PIK3CA-wildtype patients. RESULTS: Among the total cohort of 1144 patients we identified 42 (3.7%) patients with PIK3CA mutations in exon 9 and exon 20. These mutations were found with a higher frequency in sqamous cell carcinoma (8.9%) compared to adenocarcinoma (2.9%, p<0.001). The most common PIK3CA mutation was exon 9 E545K. The majority of patients (57.1%) had additional oncogenic driver aberrations. With the exception of EGFR-mutated patients, non of the genetically defined subgroups in this cohort had a significantly better median overall survival. Further, PIK3CA-mutated patients had a significantly higher incidence of malignancy prior to lung cancer (p<0.001). CONCLUSION: PIK3CA-mutated NSCLC represents a clinically and genetically heterogeneous subgroup in adenocarcinomas as well as in squamous cell carcinomas with a higher prevalence of these mutations in sqamous cell carcinoma. PIK3CA mutations have no negative impact on survival after surgery or systemic therapy. However, PIK3CA mutated lung cancer frequently develops in patients with prior malignancies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Mutation , Phosphatidylinositol 3-Kinases/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Class I Phosphatidylinositol 3-Kinases , Cohort Studies , Exons/genetics , Female , Gene Frequency , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing/methods , Humans , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/pathology , Prognosis , Survival Analysis
16.
J Clin Endocrinol Metab ; 100(1): E119-28, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25279498

ABSTRACT

CONTEXT: Primary macronodular adrenal hyperplasia (PMAH) is a rare cause of Cushing's syndrome, which may present in the context of different familial multitumor syndromes. Heterozygous inactivating germline mutations of armadillo repeat containing 5 (ARMC5) have very recently been described as cause for sporadic PMAH. Whether this genetic condition also causes familial PMAH in association with other neoplasias is unclear. OBJECTIVE: The aim of the present study was to delineate the molecular cause in a large family with PMAH and other neoplasias. PATIENTS AND METHODS: Whole-genome sequencing and comprehensive clinical and biochemical phenotyping was performed in members of a PMAH affected family. Nodules derived from adrenal surgery and pancreatic and meningeal tumor tissue were analyzed for accompanying somatic mutations in the identified target genes. RESULTS: PMAH presenting either as overt or subclinical Cushing's syndrome was accompanied by a heterozygous germline mutation in ARMC5 (p.A110fs*9) located on chromosome 16. Analysis of tumor tissue showed different somatic ARMC5 mutations in adrenal nodules supporting a second hit hypothesis with inactivation of a tumor suppressor gene. A damaging somatic ARMC5 mutation was also found in a concomitant meningioma (p.R502fs) but not in a pancreatic tumor, suggesting biallelic inactivation of ARMC5 as causal also for the intracranial meningioma. CONCLUSIONS: Our analysis further confirms inherited inactivating ARMC5 mutations as a cause of familial PMAH and suggests an additional role for the development of concomitant intracranial meningiomas.


Subject(s)
Adrenal Cortex Diseases/genetics , Cushing Syndrome/genetics , Germ-Line Mutation , Meningeal Neoplasms/genetics , Meningioma/genetics , Tumor Suppressor Proteins/genetics , Adrenal Cortex Diseases/pathology , Adult , Armadillo Domain Proteins , Cushing Syndrome/pathology , Female , Humans , Hyperplasia/genetics , Hyperplasia/pathology , Male , Meningeal Neoplasms/pathology , Meningioma/pathology , Pedigree
17.
PLoS One ; 9(8): e104566, 2014.
Article in English | MEDLINE | ID: mdl-25105902

ABSTRACT

Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE) material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany) seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3-24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can be used for downstream applications like massively parallel sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Paraffin Embedding/methods , Tissue Fixation/methods , DNA/genetics , DNA/isolation & purification , DNA Mutational Analysis/methods , Formaldehyde/chemistry , Humans , Sequence Analysis, DNA/methods
18.
Methods Mol Biol ; 1158: 239-71, 2014.
Article in English | MEDLINE | ID: mdl-24792057

ABSTRACT

Redox homeostasis is an important parameter of cell function and cell signaling. Spatial and temporal alterations of redox state control metabolism, developmental processes, as well as acute responses to environmental stresses and stress acclimation. Redox homeostasis is also linked to the circadian clock. This chapter introduces methods to assess important redox parameters such as the low molecular weight redox metabolites glutathione and ascorbate, their amount and redox state, and H2O2 as reactive oxygen species. In vivo redox cell imaging is described by use of the reduction-oxidation sensitive green fluorescent protein (roGFP). Finally, on the level of posttranslational redox modifications of proteins, methods are shown to assess hyperoxidation of 2-cysteine peroxiredoxin and glutathionylation of peroxiredoxin IIE. The redox state of 2-cysteine peroxiredoxin has been identified as a transcription-independent marker of circadian rhythmicity.


Subject(s)
Circadian Rhythm/physiology , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Cysteine/metabolism , Gene Expression , Genes, Reporter , Glutathione/metabolism , Hydrogen Peroxide/metabolism
19.
Philos Trans R Soc Lond B Biol Sci ; 369(1640): 20130424, 2014 Apr 19.
Article in English | MEDLINE | ID: mdl-24591725

ABSTRACT

High light acclimation depends on retrograde control of nuclear gene expression. Retrograde regulation uses multiple signalling pathways and thus exploits signal patterns. To maximally challenge the acclimation system, Arabidopsis thaliana plants were either adapted to 8 (low light (L-light)) or 80 µmol quanta m(-2) s(-1) (normal light (N-light)) and subsequently exposed to a 100- and 10-fold light intensity increase, respectively, to high light (H-light, 800 µmol quanta m(-2) s(-1)), for up to 6 h. Both L → H- and N → H-light plants efficiently regulated CO2 assimilation to a constant level without apparent damage and inhibition. This experimental set-up was scrutinized for time-dependent regulation and efficiency of adjustment. Transcriptome profiles revealed that N-light and L-light plants differentially accumulated 2119 transcripts. After 6 h in H-light, only 205 remained differently regulated between the L → H- and N → H-light plants, indicating efficient regulation allowing the plants to reach a similar transcriptome state. Time-dependent analysis of transcripts as markers for signalling pathways, and of metabolites and hormones as possibly involved transmitters, suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metabolites and redox cues predominantly control the acclimation response, whereas abscisic acid, salicylic acid and auxins play an insignificant or minor role.


Subject(s)
Acclimatization/physiology , Arabidopsis/physiology , Gene Expression Regulation, Plant/radiation effects , Light , Signal Transduction/physiology , Abscisic Acid/analysis , Arabidopsis/metabolism , Gene Expression Profiling , Indoleacetic Acids/analysis , Kinetics , Microarray Analysis , Oxylipins/analysis , Photic Stimulation , Salicylic Acid/analysis , Signal Transduction/radiation effects , Time Factors
20.
Diagn Pathol ; 9: 48, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24593867

ABSTRACT

BACKGROUND: Hamartin (TSC1) and tuberin (TSC2), encoded by the tuberous sclerosis complex (TSC) genes, form a tumor-suppressor heterodimer which is implicated in PI3K-Akt signaling and acts as a functional inhibitor of the mammalian target of rapamycin (mTOR). Dysregulation of mTOR has been assigned to carcinogenesis and thus may be involved in cancer development. We have addressed the role of hamartin, phospho-tuberin (p-TSC2) and phospho-mTOR (p-mTOR) in a series of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) samples. METHODS: We collected 166 NSCLC and SCLC samples for immunohistochemical studies and performed western blot analyses in NSCLC and SCLC cell lines as well as comparative analyses with EGFR phosphorylation and downstream effectors. RESULTS: In cell lines we found an inverse correlation between hamartin and p-mTOR expression. In surgical specimens cytoplasmic hamartin expression was observed in more than 50% of adenocarcinoma (AC) and squamous cell carcinoma (SCC) compared to 14% of SCLC. P-mTOR and p-TSC2 staining was found in a minority of cases.There was a significant correlation between p-EGFR Tyr-1068, p-EGFR Tyr-992 and hamartin, and also between p-mTOR and p-EGFR Tyr-1173 in AC. In SCC an inverse correlation between hamartin and p-EGFR Tyr-992 was detected. Phosphorylation of TSC2 was associated with expression of MAP-Kinase. Hamartin, p-TSC2 and p-mTOR expression was not dependant of the EGFR mutation status. Hamartin expression is associated with poorer survival in SCC and SCLC. CONCLUSIONS: Our findings confirm the inhibitory role of the tuberous sclerosis complex for mTOR activation in lung cancer cell lines. These results reveal hamartin expression in a substantial subset of NSCLC and SCLC specimens, which may be due to EGFR signaling but is not dependant on EGFR mutations. Our data provide evidence for a functional role of the tuberous sclerosis complex in lung cancer. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9274845161175223.


Subject(s)
Lung Neoplasms/metabolism , Signal Transduction/physiology , Tumor Suppressor Proteins/metabolism , Adult , Aged , Aged, 80 and over , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Genes, erbB-1 , Humans , Immunohistochemistry , Male , Middle Aged , Phosphorylation , Reverse Transcriptase Polymerase Chain Reaction , Small Cell Lung Carcinoma/metabolism , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...