Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res ; 46: 38, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25889651

ABSTRACT

Cattle are the most important reservoir for enterohemorrhagic Escherichia coli (EHEC), a subset of shigatoxigenic E. coli (STEC) capable of causing life-threatening infectious diseases in humans. In cattle, Shiga toxins (Stx) suppress the immune system thereby promoting long-term STEC shedding. First infections of animals at calves' age coincide with the lack of Stx-specific antibodies. We hypothesize that vaccination of calves against Shiga toxins prior to STEC infection may help to prevent the establishment of a persistent type of infection. The objectives of this study were to generate recombinant Shiga toxoids (rStx1mut & rStx2mut) by site-directed mutagenesis and to assess their immunomodulatory, antigenic, and immunogenic properties. Cultures of bovine primary immune cells were used as test systems. In ileal intraepithelial lymphocytes both, recombinant wild type Stx1 (rStx1WT) and rStx2WT significantly induced transcription of IL-4 mRNA. rStx1WT and rStx2WT reduced the expression of Stx-receptor CD77 (syn. Globotriaosylceramide, Gb3) on B and T cells from peripheral blood and of CD14 on monocyte-derived macrophages. At the same concentrations, rStx1mut and rStx2mut exhibited neither of these effects. Antibodies in sera of cattle naturally infected with STEC recognized the rStxmut toxoids equally well as the recombinant wild type toxins. Immunization of calves with rStx1mut plus rStx2mut led to induction of antibodies neutralizing Stx1 and Stx2. While keeping their antigenicity and immunogenicity recombinant Shiga toxoids are devoid of the immunosuppressive properties of the corresponding wild type toxins in cattle and candidate vaccines to mitigate long-term STEC shedding by the reservoir host.


Subject(s)
Bacterial Proteins/genetics , Cattle Diseases/immunology , Escherichia coli Infections/veterinary , Escherichia coli Vaccines/immunology , Shiga-Toxigenic Escherichia coli/immunology , Toxoids/pharmacology , Animals , Bacterial Proteins/metabolism , Cattle , Cattle Diseases/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Vaccines/adverse effects , Male , Mutagenesis, Site-Directed/veterinary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
2.
Nat Chem Biol ; 8(1): 125-32, 2011 Nov 27.
Article in English | MEDLINE | ID: mdl-22119860

ABSTRACT

The eukaryotic replicative DNA polymerases (Pol α, δ and ɛ) and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31 and Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of the CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and replisome stability.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Saccharomyces cerevisiae/enzymology , Catalytic Domain , DNA-Directed DNA Polymerase/chemistry , Iron/metabolism , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...