Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Genet ; 55(4): 619-630, 2023 04.
Article in English | MEDLINE | ID: mdl-36973454

ABSTRACT

Neuroblastoma, the most frequent solid tumor in infants, shows very diverse outcomes from spontaneous regression to fatal disease. When these different tumors originate and how they evolve are not known. Here we quantify the somatic evolution of neuroblastoma by deep whole-genome sequencing, molecular clock analysis and population-genetic modeling in a comprehensive cohort covering all subtypes. We find that tumors across the entire clinical spectrum begin to develop via aberrant mitoses as early as the first trimester of pregnancy. Neuroblastomas with favorable prognosis expand clonally after short evolution, whereas aggressive neuroblastomas show prolonged evolution during which they acquire telomere maintenance mechanisms. The initial aneuploidization events condition subsequent evolution, with aggressive neuroblastoma exhibiting early genomic instability. We find in the discovery cohort (n = 100), and validate in an independent cohort (n = 86), that the duration of evolution is an accurate predictor of outcome. Thus, insight into neuroblastoma evolution may prospectively guide treatment decisions.


Subject(s)
Neuroblastoma , Infant , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Prognosis , Whole Genome Sequencing
2.
Neuro Oncol ; 23(12): 2028-2041, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34049392

ABSTRACT

BACKGROUND: Medulloblastomas with chromothripsis developing in children with Li-Fraumeni Syndrome (germline TP53 mutations) are highly aggressive brain tumors with dismal prognosis. Conventional photon radiotherapy and DNA-damaging chemotherapy are not successful for these patients and raise the risk of secondary malignancies. We hypothesized that the pronounced homologous recombination deficiency in these tumors might offer vulnerabilities that can be therapeutically utilized in combination with high linear energy transfer carbon ion radiotherapy. METHODS: We tested high-precision particle therapy with carbon ions and protons as well as topotecan with or without PARP inhibitor in orthotopic primary and matched relapsed patient-derived xenograft models. Tumor and normal tissue underwent longitudinal morphological MRI, cellular (markers of neurogenesis and DNA damage-repair), and molecular characterization (whole-genome sequencing). RESULTS: In the primary medulloblastoma model, carbon ions led to complete response in 79% of animals irrespective of PARP inhibitor within a follow-up period of 300 days postirradiation, as detected by MRI and histology. No sign of neurologic symptoms, impairment of neurogenesis or in-field carcinogenesis was detected in repair-deficient host mice. PARP inhibitors further enhanced the effect of proton irradiation. In the postradiotherapy relapsed tumor model, median survival was significantly increased after carbon ions (96 days) versus control (43 days, P < .0001). No major change in the clonal composition was detected in the relapsed model. CONCLUSION: The high efficacy and favorable toxicity profile of carbon ions warrants further investigation in primary medulloblastomas with chromothripsis. Postradiotherapy relapsed medulloblastomas exhibit relative resistance compared to treatment-naïve tumors, calling for exploration of multimodal strategies.


Subject(s)
Cerebellar Neoplasms , Chromothripsis , Heavy Ion Radiotherapy , Li-Fraumeni Syndrome , Medulloblastoma , Animals , Carbon , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/radiotherapy , Humans , Medulloblastoma/drug therapy , Medulloblastoma/radiotherapy , Mice
3.
Nat Genet ; 53(5): 683-693, 2021 05.
Article in English | MEDLINE | ID: mdl-33767450

ABSTRACT

Neuroblastoma is a pediatric tumor of the developing sympathetic nervous system. However, the cellular origin of neuroblastoma has yet to be defined. Here we studied the single-cell transcriptomes of neuroblastomas and normal human developing adrenal glands at various stages of embryonic and fetal development. We defined normal differentiation trajectories from Schwann cell precursors over intermediate states to neuroblasts or chromaffin cells and showed that neuroblastomas transcriptionally resemble normal fetal adrenal neuroblasts. Importantly, neuroblastomas with varying clinical phenotypes matched different temporal states along normal neuroblast differentiation trajectories, with the degree of differentiation corresponding to clinical prognosis. Our work highlights the roles of oncogenic MYCN and loss of TFAP2B in blocking differentiation and may provide the basis for designing therapeutic interventions to overcome differentiation blocks.


Subject(s)
Gene Expression Profiling , Neuroblastoma/genetics , Neuroblastoma/pathology , Single-Cell Analysis , Adrenal Glands/embryology , Adrenal Glands/pathology , Cell Differentiation , Cell Line, Tumor , Cohort Studies , Gene Expression Regulation, Neoplastic , Humans , Transcriptome/genetics , Treatment Outcome
4.
Cancer Res ; 80(22): 4918-4931, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32973084

ABSTRACT

Chromothripsis is a form of genome instability by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosomes. Widely assumed to be an early event in tumor development, this phenomenon plays a prominent role in tumor onset. In this study, an analysis of chromothripsis in 252 human breast cancers from two patient cohorts (149 metastatic breast cancers, 63 untreated primary tumors, 29 local relapses, and 11 longitudinal pairs) using whole-genome and whole-exome sequencing reveals that chromothripsis affects a substantial proportion of human breast cancers, with a prevalence over 60% in a cohort of metastatic cases and 25% in a cohort comprising predominantly luminal breast cancers. In the vast majority of cases, multiple chromosomes per tumor were affected, with most chromothriptic events on chromosomes 11 and 17 including, among other significantly altered drivers, CCND1, ERBB2, CDK12, and BRCA1. Importantly, chromothripsis generated recurrent fusions that drove tumor development. Chromothripsis-related rearrangements were linked with univocal mutational signatures, with clusters of point mutations due to kataegis in close proximity to the genomic breakpoints and with the activation of specific signaling pathways. Analyzing the temporal order of events in tumors with and without chromothripsis as well as longitudinal analysis of chromothriptic patterns in tumor pairs offered important insights into the role of chromothriptic chromosomes in tumor evolution. SIGNIFICANCE: These findings identify chromothripsis as a major driving event in human breast cancer.


Subject(s)
Breast Neoplasms/genetics , Chromothripsis , Gene Rearrangement , Neoplasm Recurrence, Local/genetics , Algorithms , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 17 , Cyclin D1/genetics , Cyclin-Dependent Kinases/genetics , DNA Repair , Female , Gene Fusion , Genes, BRCA1 , Genes, BRCA2 , Genes, erbB-2 , Genes, p53 , Humans , INDEL Mutation , Signal Transduction , Exome Sequencing , Whole Genome Sequencing
5.
Cancer Cell ; 35(4): 692-704.e12, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30905762

ABSTRACT

We studied how intratumoral genetic heterogeneity shapes tumor growth and therapy response for isocitrate dehydrogenase (IDH)-wild-type glioblastoma, a rapidly regrowing tumor. We inferred the evolutionary trajectories of matched pairs of primary and relapsed tumors based on deep whole-genome-sequencing data. This analysis suggests both a distant origin of de novo glioblastoma, up to 7 years before diagnosis, and a common path of early tumorigenesis, with one or more of chromosome 7 gain, 9p loss, or 10 loss, at tumor initiation. TERT promoter mutations often occurred later as a prerequisite for rapid growth. In contrast to this common early path, relapsed tumors acquired no stereotypical pattern of mutations and typically regrew from oligoclonal origins, suggesting sparse selective pressure by therapeutic measures.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Evolution, Molecular , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Telomerase/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromosomes, Human, Pair 7 , DNA Methylation , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Glioblastoma/enzymology , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Isocitrate Dehydrogenase/metabolism , Neoplasm Recurrence, Local , Promoter Regions, Genetic , Signal Transduction , Telomerase/metabolism , Time Factors
6.
Oncol Lett ; 15(2): 1728-1736, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29434868

ABSTRACT

The non-nucleoside reverse transcriptase inhibitor (NNRTI) Efavirenz is frequently used in human immunodeficiency virus treatment, but also efficient against cancer in mouse models. Its radiosensitizing effect makes it a promising drug for combination with radiotherapy. The efficacy of Efavirenz combined with irradiation was assessed with immunostaining of DNA-damage markers and colony formation assays in BxPC-3 pancreatic cancer cells. Gene expression and protein phosphorylation of the Efavirenz-sensitive BxPC-3 cells was compared to the resistant primary fibroblasts SBL-5. Oxidative stress, mitochondrial damage and cell death were studied with live-cell microscopy and flow cytometry. Combined Efavirenz and radiation significantly increased the number of γH2AX and phospho-ataxia telangiectasia mutated foci. Efavirenz and ionizing radiation had a synergistic effect using the clonogenic survival assay. Efavirenz selectively induced cell death in the BxPC-3 cells. The differing gene expression of cell cycle and apoptotic regulator genes in both cell cultures after Efavirenz treatment match with this selective effect against cancer cells. In the phosphoprotein array, an early phosphorylation of extracellular signal-related kinase 1/2 and p38 mitogen-activated protein kinase was notably detected in the cancer cells. The phosphorylation of AKT decreased in the cancer cells whereas it increased in the fibroblasts. Oxidative stress and mitochondrial membrane depolarization appeared in the cancer cells immediately after Efavirenz treatment, but not in the fibroblasts. Efavirenz has an anti-cancer effect against pancreatic cancer mainly by the induction of oxidative stress. The antitumor potential of Efavirenz and radiotherapy are additive.

SELECTION OF CITATIONS
SEARCH DETAIL
...