Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Cell ; 34(13): ar126, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37756124

ABSTRACT

The endocytic pathway is of central importance for eukaryotic cells, as it enables uptake of extracellular materials, membrane protein quality control and recycling, as well as modulation of receptor signaling. While the ATPase p97 (VCP, Cdc48) has been found to be involved in the fusion of early endosomes and endolysosomal degradation, its role in endocytic trafficking is still incompletely characterized. Here, we identify myoferlin (MYOF), a ferlin family member with functions in membrane trafficking and repair, as a hitherto unknown p97 interactor. The interaction of MYOF with p97 depends on the cofactor PLAA previously linked to endosomal sorting. Besides PLAA, shared interactors of p97 and MYOF comprise several proteins involved in endosomal recycling pathways, including Rab11, Rab14, and the transferrin receptor CD71. Accordingly, a fraction of p97 and PLAA localizes to MYOF-, Rab11-, and Rab14-positive endosomal compartments. Pharmacological inhibition of p97 delays transferrin recycling, indicating that p97 promotes not only the lysosomal degradation, but also the recycling of endocytic cargo.


Subject(s)
Endosomes , Membrane Proteins , Biological Transport , Endosomes/metabolism , Membrane Proteins/metabolism , Protein Transport , Transferrin/metabolism , Humans
2.
Elife ; 122023 09 15.
Article in English | MEDLINE | ID: mdl-37713320

ABSTRACT

The ATPase p97 (also known as VCP, Cdc48) has crucial functions in a variety of important cellular processes such as protein quality control, organellar homeostasis, and DNA damage repair, and its de-regulation is linked to neuromuscular diseases and cancer. p97 is tightly controlled by numerous regulatory cofactors, but the full range and function of the p97-cofactor network is unknown. Here, we identify the hitherto uncharacterized FAM104 proteins as a conserved family of p97 interactors. The two human family members VCP nuclear cofactor family member 1 and 2 (VCF1/2) bind p97 directly via a novel, alpha-helical motif and associate with p97-UFD1-NPL4 and p97-UBXN2B complexes in cells. VCF1/2 localize to the nucleus and promote the nuclear import of p97. Loss of VCF1/2 results in reduced nuclear p97 levels, slow growth, and hypersensitivity to chemical inhibition of p97 in the absence and presence of DNA damage, suggesting that FAM104 proteins are critical regulators of nuclear p97 functions.


Subject(s)
Nuclear Proteins , Valosin Containing Protein , Humans , Valosin Containing Protein/genetics , Nuclear Proteins/metabolism , Active Transport, Cell Nucleus
3.
Nature ; 583(7815): 303-309, 2020 07.
Article in English | MEDLINE | ID: mdl-32612236

ABSTRACT

Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems1,2. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress3-5. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 107 copies per cell)6,7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy4,7. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited7. Here, we integrate quantitative global translatome and degradome proteomics8 with genetically encoded Ribo-Keima5 and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress.


Subject(s)
Nutrients/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Stress, Physiological , Amino Acids/deficiency , Amino Acids/metabolism , Autophagy , Cell Line , Homeostasis , Humans , Proteolysis , Proteome/biosynthesis , Proteome/metabolism , Proteomics , Purines/metabolism , Single-Cell Analysis , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL