Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neurotox Res ; 20(1): 93-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20838953

ABSTRACT

As a first attempt at exploring an association between histaminergic and serotoninergic neuronal phenotypes in glucose regulation, the influence of the histamine H3 receptor antagonist thioperamide on glucose uptake by brain was determined in rats in which the serotoninergic innervations of brain was largely destroyed perinatally. Male Wistar rats were initially treated on the 3rd day after birth with the serotoninergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) (75 µg icv) or saline vehicle (10 µl icv). At 8 weeks lesioned and control rats were terminated in order to validate the effectiveness of 5,7-DHT: reduction in 5-HT and 5-HIAA by 83-91% and 69-83% in striatum, frontal cortex, and hippocampus (HPLC/ED method). Other groups of rats were pretreated with thioperamide (5.0 mg/kg ip) or saline vehicle 60 min prior to 6-[³H]-D-glucose (500 µCi/kg ip). Fifteen-min later rats were decapitated and brains were excised and dissected to remove frontal cortex, striatum, hippocampus, thalamus/hypothalamus, pons, and cerebellum. Liquid scintillation spectroscopy was used to determine that [³H]glucose uptake, which was enhanced in 5,7-DHT lesioned rats in cortex (by 88%), hippocampus, thalamus/hypothalamus, pons and cerebellum (each by 47-56%), and in striatum (by 35%). In contrast, thioperamide prevented the enhancement in [³H]glucose uptake in all brain regions of 5,7-DHT neonatally lesioned rats; and [³H]glucose levels were significantly different in all brain regions (except thalamus/hypothalamus) in thioperamide-versus saline-treated rats. These findings indicate a functional association between histaminergic and serotoninergic systems in brain in relation to glucose regulation.


Subject(s)
5,7-Dihydroxytryptamine/pharmacology , Brain/drug effects , Brain/metabolism , Glucose/metabolism , Histamine H3 Antagonists/pharmacology , Piperidines/pharmacology , Animals , Animals, Newborn , Brain/diagnostic imaging , Brain/physiology , Male , Radionuclide Imaging , Rats , Rats, Wistar , Serotonin/metabolism , Serotonin/physiology , Tritium/metabolism
2.
Neurotox Res ; 15(3): 246-51, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19384597

ABSTRACT

Rats lesioned shortly after birth with 6-OHDA have been proposed to be a near-ideal model of severe Parkinson's disease, because of non-lethality of the procedure, near-total destruction of nigrostriatal dopaminergic fibers, and near-total dopamine (DA) denervation of striatum. There are scarce data that in Parkinson's disease, activity of the central histaminergic system is increased. Therefore, the aim of this study was to determine histamine content in the brain and the effect of histamine receptor antagonists on behavior of adult rats. At 3 days after birth, Wistar rats were pretreated with desipramine (20.0 mg/kg ip) 1 h before bilateral icv administration of the catecholaminergic neurotoxin 6-OHDA (67 microg base, on each side) or saline-ascorbic acid (0.1%) vehicle (control). At 8 weeks levels of DA and its metabolites L: -3,4-dihydroxyphenylalanine (DOPAC) and homovanillic acid (HVA) were estimated in the striatum and frontal cortex by HPCL/ED technique. In the hypothalamus, hippocampus, frontal cortex, and medulla oblongata, the level of histamine was analyzed by immunoenzymatic method. Behavioral observations (locomotion, exploratory-, oral-, and stereotyped-activity) were additionally made on control and 6-OHDA neonatally lesioned rats. Effects of DA receptor agonists (SKF 38393, apomorphine) and histamine receptor antagonists (e.g., S(+)chlorpheniramine, H(1); cimetidine, H(2); thioperamide, H(3) agonist) were determined. We confirmed that 6-OHDA significantly reduced contents of DA and its metabolites in the brain in adulthood. Histamine content was significantly increased in the hypothalamus, hipocampus, and medulla oblongata. Moreover, in 6-OHDA-lesioned rats behavioral response was altered mainly by thioperamide (H(3) antagonist). These findings indicate that histamine and the central histaminergic system are altered in the brain of rats lesioned to model Parkinson's disease, and that histaminergic neurons exert a modulating role in Parkinsonian 6-OHDA-lesioned rats.


Subject(s)
Histamine/metabolism , Parkinson Disease/metabolism , Adrenergic Agents/toxicity , Animals , Animals, Newborn , Apomorphine/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Dopamine/metabolism , Dopamine Agonists/pharmacology , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Histamine Antagonists/pharmacology , Locomotion/drug effects , Locomotion/physiology , Male , Mouth Abnormalities/chemically induced , Oxidopamine/toxicity , Parkinson Disease/etiology , Parkinson Disease/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL