Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 115(25): 256104, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26722930

ABSTRACT

Mn has been found to self-assemble into atomic chains running perpendicular to the surface dimer reconstruction on Si(001). They differ from other atomic chains by a striking asymmetric appearance in filled state scanning tunneling microscopy (STM) images. This has prompted complicated structural models involving up to three Mn atoms per chain unit. Combining STM, atomic force microscopy, and density functional theory we find that a simple necklacelike chain of single Mn atoms reproduces all their prominent features, including their asymmetry not captured by current models. The upshot is a remarkably simpler structure for modeling the electronic and magnetic properties of Mn atom chains on Si(001).

2.
Phys Rev Lett ; 97(10): 107205, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-17025850

ABSTRACT

Epitaxial La(3/4)Ca(1/4)MnO3/MgO(100) (LCMO) thin film shows an unusual rhombohedral (R-3c) structure with a new perovskite superstructure at room temperature due to the CE-type ordering of La and Ca with modulation vector q=1/4[011]. A-site ordered film was found to be electronically homogeneous down to the 1 nm scale as revealed by scanning tunnelling microscopy/spectroscopy. In contrast, orthorhombic and A-site disordered LCMO demonstrate a mesoscopic phase separation far below the Curie temperature (TC). Unique La/Ca ordering compensates the cation mismatch stress within one supercell, a(S) approximately 1.55 nm, and enhances the electronic homogeneity. The phase separation does not seem to be a unique mechanism for the colossal magnetoresistance (CMR) as very large CMR approximately 500% was also observed in A-site ordered films.

SELECTION OF CITATIONS
SEARCH DETAIL
...