Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Transplant ; 21(4): 749-62, 2012.
Article in English | MEDLINE | ID: mdl-21929871

ABSTRACT

Exogenous cell replacement represents a potent treatment option for Parkinson's disease. However, the low survival rate of transplanted dopaminergic neurons (DA) calls for methodological improvements. Here we evaluated a method to combine transient genetic modification of neuronal progenitor cells with an optimized cell culture protocol prior to intrastriatal transplantation into 6-hydroxydopamine (6-OHDA) unilateral lesioned rats. Plasmid-based delivery of brain-derived neurotrophic factor (BDNF) increases the number of DA neurons, identified by tyrosine hydroxylase immunoreactivity (TH-ir), by 25% in vitro, compared to enhanced green fluorescence protein (EGFP)-transfected controls. However, the nucleofection itself, especially the cell detachment and reseeding procedure, decreases the TH-ir neuron number to 40% compared with nontransfected control cultures. To circumvent this drawback we established the colayer method, which contains a mix of nucleofected cells reseeded on top of an adherent sister culture in a ratio 1:3. In this setup TH-ir neuron number remains high and could be further increased by 25% after BDNF transfection. Comparison of both cell culture procedures (standard and colayer) after intrastriatal transplantation revealed a similar DA neuron survival as seen in vitro. Two weeks after grafting TH-ir neuron number was strongly reduced in animals receiving the standard EGFP-transfected cells (271 ± 62) compared to 1,723 ± 199 TH-ir neurons in the colayer group. In contrast to the in vitro results, no differences in the number of grafted TH-ir neurons were observed between BDNF, EGFP, and nontransfected colayer groups, neither 2 nor 13 weeks after transplantation. Likewise, amphetamine and apomorphine-induced rotational behavior improved similarly over time in all groups. Nevertheless, the colayer protocol provides an efficient way for neurotrophic factor release by transplanted progenitor cells and will help to study the effects of candidate factors on survival and integration of transplanted DA neurons.


Subject(s)
Mesencephalon/cytology , Oxidopamine/adverse effects , Parkinson Disease/therapy , Stem Cell Transplantation/methods , Stem Cells/cytology , Animals , Blotting, Western , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Rats , Rats, Sprague-Dawley , Stem Cells/metabolism
2.
J Chem Neuroanat ; 37(2): 118-27, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19038327

ABSTRACT

Neonatal Borna disease virus (BDV) infection of the Lewis rat leads to progressive degeneration of dentate gyrus granule cells, and cerebellar Purkinje neurons. Our aim here was to clarify whether BDV interfered with the formation of electrical synapses, and we, therefore, analysed expression of the neuronal gap junction protein connexin36 (Cx36) in the Lewis rat hippocampal formation, and cerebellar cortex, 4 and 8 weeks after neonatal infection. Semiquantitative RT-PCR, revealed a BDV-dependent decrease in Cx36 mRNA in the hippocampal formation 4 and 8 weeks post-infection (p.i.), and in the cerebellar cortex 8 weeks p.i. Correspondingly, immunofluorescent staining revealed reduced Cx36 immunoreactivity in both dentate gyrus, and ammons horn CA3 region, 4 and 8 weeks post-infection. In the cerebellar cortex, Cx36 immunoreactivity was detected only 8 weeks post-infection in the molecular layer, where it was down regulated by BDV. Our findings demonstrate, for the first time, distinct BDV-dependent reductions in Cx36 mRNA and protein in the rat hippocampal formation and cerebellar cortex, suggesting altered neuronal network properties to be an important feature of persistent viral brain infections.


Subject(s)
Borna Disease/metabolism , Cerebellar Cortex/metabolism , Connexins/genetics , Gap Junctions/metabolism , Hippocampus/metabolism , Nerve Degeneration/metabolism , Age Factors , Animals , Animals, Newborn , Borna Disease/pathology , Borna Disease/physiopathology , Cerebellar Cortex/physiopathology , Cerebellar Cortex/virology , Down-Regulation/physiology , Female , Fluorescent Antibody Technique , Gap Junctions/pathology , Gene Expression Regulation/physiology , Hippocampus/physiopathology , Hippocampus/virology , Nerve Degeneration/physiopathology , Nerve Degeneration/virology , Nerve Net/metabolism , Nerve Net/physiopathology , Nerve Net/virology , RNA, Messenger/metabolism , Rats , Rats, Inbred Lew , Synaptic Transmission/physiology , Gap Junction delta-2 Protein
3.
Brain Res ; 1219: 143-58, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18538309

ABSTRACT

Neonatal Borna Disease Virus (BDV) infection of the Lewis rat brain, leads to Purkinje cell degeneration, in association with astroglial activation. Since astroglial gap junctions (GJ) are known to influence neuronal degeneration, we investigated BDV dependent changes in astroglial GJ connexins (Cx) Cx43, and Cx30 in the Lewis rat cerebellum, 4, and 8 weeks after neonatal infection. On the mRNA level, RT-PCR demonstrated a BDV dependent increase in cerebellar Cx43, and a decrease in Cx30, 8, but not 4 weeks p.i. On the protein level, Western blot analysis revealed no overall upregulation of Cx43, but an increase of its phosphorylated forms, 8 weeks p.i. Cx30 protein was downregulated. Immunohistochemistry revealed a BDV dependent reduction of Cx43 in the granular layer (GL), 4 weeks p.i. 8 weeks p.i., Cx43 immunoreactivity recovered in the GL, and was induced in the molecular layer (ML). Cx30 revealed a BDV dependent decrease in the GL, both 4, and 8 weeks p.i. Changes in astroglial Cxs correlated not with expression of the astrogliotic marker GFAP, which was upregulated in radial glia. With regard to functional coupling, primary cerebellar astroglial cultures, revealed a BDV dependent increase of Cx43, and Cx30 immunoreactivity and in spreading of the GJ permeant dye Lucifer Yellow. These results demonstrate a massive, BDV dependent reorganization of astroglial Cx expression, and of functional GJ coupling in the cerebellar cortex, which might be of importance for the BDV dependent neurodegeneration in this brain region.


Subject(s)
Borna Disease/pathology , Borna disease virus/pathogenicity , Cerebellar Cortex/pathology , Gap Junctions/pathology , Neuroglia/metabolism , Neuroglia/pathology , Animals , Animals, Newborn , Borna Disease/virology , Cells, Cultured , Connexin 30 , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Disease Models, Animal , Female , Gap Junctions/virology , Gene Expression Regulation, Viral/physiology , Glial Fibrillary Acidic Protein , Male , Neuroglia/virology , Pregnancy , RNA, Messenger/metabolism , Rats , Rats, Inbred Lew , Time Factors
4.
Brain Res ; 1184: 316-32, 2007 Dec 12.
Article in English | MEDLINE | ID: mdl-18028885

ABSTRACT

Neonatal Borna Disease Virus (BDV) infection of the Lewis rat brain leads to dentate gyrus (DG) degeneration, underlying mechanisms are not fully understood. Since astroglial gap junction (GJ) coupling is known to influence neurodegenerative processes, the question arose whether persistent BDV infection influences astroglial connexins (Cx) Cx43 and Cx30 in the hippocampal formation (HiF) of Lewis rats. RT-PCR and Western blot analysis of forebrain (FB) samples revealed a virus dependent reduction of both Cx types 8 but not 4 weeks post infection (p.i.). Immunohistochemistry revealed an increase of Cx43 in the DG and a decrease in the CA3 region 4 and 8 weeks p.i. Cx30, which was detectable only 8 weeks p.i., revealed a BDV dependent increase in DG and CA3 regions. BDV dependent astrogliosis as revealed by immunodetection of glial fibrillary acidic protein (GFAP) correlated not with astroglial connexin expression. With regard to functional coupling as revealed by scrape loading, BDV infection resulted in increased spreading of the GJ permeant dye Lucifer yellow in primary hippocampal astroglial cultures, and in increased expression of Cx43 and Cx30 as revealed by immunocytochemistry. In conclusion, persistent BDV infection of the Lewis rat brain leads to changes in astroglial Cx expression both in vivo and in vitro and of functional coupling in vitro. Distribution and time course of these changes suggest them to be a direct result of neurodegeneration in the DG and an indirect effect of neuronal deafferentiation in the CA3 region.


Subject(s)
Borna disease virus/pathogenicity , Brain Diseases/pathology , Gap Junctions/metabolism , Gene Expression Regulation, Viral/physiology , Hippocampus/pathology , Neuroglia/metabolism , Age Factors , Animals , Brain Diseases/virology , Connexin 43/genetics , Connexin 43/metabolism , Female , Glial Fibrillary Acidic Protein , In Vitro Techniques , Neuroglia/virology , Pregnancy , Rats , Rats, Inbred Lew , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...