Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 90(9): 4298-4307, 2016 May.
Article in English | MEDLINE | ID: mdl-26889029

ABSTRACT

UNLABELLED: Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro Recently, we reported that inactivation of a single HA-activating protease gene,Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast,Tmprss2(-/-)Tmprss4(-/-)double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo IMPORTANCE: Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes,Tmprss2 and Tmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza viruses in vivo.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H3N2 Subtype/physiology , Membrane Proteins/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Serine Endopeptidases/metabolism , Animals , Bronchi/metabolism , Bronchi/virology , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Enzyme Activation , Female , Gene Deletion , Gene Expression , Host-Pathogen Interactions , Membrane Proteins/genetics , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Proteolysis , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , Serine Endopeptidases/genetics , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...