Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 113(6): 3811-3826, 2021 11.
Article in English | MEDLINE | ID: mdl-34508856

ABSTRACT

The aim of this study was to investigate the respective contribution of maternally-inherited mRNAs and proteins to egg molecular cargo and to its developmental competence in fish using pikeperch as a model. Our study provides novel insights into the understanding of type-specific roles of maternally-inherited molecules in fish. Here we show, for the first time, that transcripts and proteins have distinct, yet complementary, functions in the egg of teleost fish. Maternally-inherited mRNAs would shape embryo neurodevelopment, while maternally-inherited proteins would rather be responsible for protecting the embryo against pathogens. Additionally, we observed that processes directly preceding ovulation may considerably affect the reproductive success by modifying expression level of genes crucial for proper embryonic development, being novel fish egg quality markers (e.g., smarca4 or h3f3a). These results are of major importance for understanding the influence of external factors on reproductive fitness in both captive and wild-type fish species.


Subject(s)
Embryonic Development , Reproduction , Animals , Embryonic Development/genetics , Female , Immune System/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
iScience ; 23(9): 101516, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32927262

ABSTRACT

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is characterized by progressive muscle weakness. Even though DMD manifests first in skeletal muscle, heart failure is a major cause of death in late-stage DMD. To get insights into DMD-associated cardiomyopathy, we performed a proteome analysis of myocardium from a genetically engineered porcine DMD model resembling clinical and pathological hallmarks of human DMD. To capture DMD progression, samples from 2-day- and 3-month-old animals were analyzed. Dystrophin was absent in all DMD samples, and components of the dystrophin-associated protein complex were decreased, suggesting destabilization of the cardiomyocyte plasma membrane and impaired cellular signaling. Furthermore, abundance alterations of proteins known to be associated with human cardiomyopathy were observed. Compared with data from skeletal muscle, we found clear evidence that DMD progression in myocardium is not only slower than in skeletal muscle but also involves different biological and biochemical pathways.

3.
Biol Reprod ; 102(3): 730-739, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31786596

ABSTRACT

Over the last decades, fertility of dairy cows has declined due to selection strategies focusing on milk yield. To study the effect of genetic merit for fertility on the proteome of the bovine uterine luminal fluid, Holstein heifers with low- and two groups of heifers with high-fertility index (high-fertility Holstein and Montbéliarde) were investigated. To focus on the maternal effect, heifers from all groups were synchronized and received on Day 7 high-quality embryos. Uterine luminal fluid from Day 19 pregnant heifers was analyzed in a holistic proteomic approach using nano-LC-MS/MS analysis combined with a label-free quantification approach. In total, 1737 proteins were identified, of which 597 differed significantly in abundance between the three groups. The vast majority of proteome differences was found comparing both high-fertility groups to the low-fertility Holstein group, showing that the genetic predisposition for fertility is prevalent regarding the uterine luminal fluid proteome. Evaluation of this dataset using bioinformatic tools revealed an assignment of higher abundant proteins in low-fertility Holstein to several metabolic processes, such as vitamin metabolic process, which comprises folate receptor alpha (FOLR1) and retinol-binding protein, indicating an involvement of disturbed metabolic processes in decreased fertility. Moreover, immune system-related proteins - lactotransferrin and chromogranin A - were enriched in low-fertility cows together with interferon tau 3 h and interferon tau-2. Our results indicate that the genetic merit for fertility leads to substantial quantitative differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus.


Subject(s)
Fertility/physiology , Proteome/metabolism , Uterus/metabolism , Animals , Cattle , Chromogranin A/metabolism , Computational Biology , Female , Folate Receptor 1/metabolism , Lactoferrin/metabolism , Proteomics , Tandem Mass Spectrometry
4.
Biol Reprod ; 101(5): 893-905, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31347661

ABSTRACT

The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.


Subject(s)
Body Fluids/chemistry , Fallopian Tubes/physiology , Proteome , Animals , Body Fluids/metabolism , Cattle , Female , Gene Expression Regulation/physiology , Proteomics , Transcriptome
5.
Theriogenology ; 132: 53-61, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30991169

ABSTRACT

The oviduct provides the optimal micro milieu for early embryo development. However, accessing the bovine oviductal fluid in vivo for analysis is still challenging and therefore the oviductal fluid is usually collected post mortem. In the study presented here we introduce a novel approach to gain minimal invasive access to the bovine oviductal fluid proteome in vivo by transvaginal endoscopy at different stages of the estrous cycle. The first experiment aimed at transferring C4 derivatised magnetic beads to bind the oviductal fluid proteome in situ. Protein carrying beads were recovered by flushing the oviduct and proteins were eluted. In the second experiment a flushing solution was injected into and aspirated from the oviduct repeatedly. The flushing solution was centrifuged to separate the fluid from the cellular debris. Proteins were identified by nano-LC-MS/MS. Two different stages of the estrous cycle (Day 1 and Day 3) were analyzed in samples from 30 heifers. Both methods were applied successfully and in total, more than 3000 proteins were identified, so far representing the most comprehensive OF proteome published. This new minimal invasive approach to access the bovine oviductal fluid proteome facilitates future innovative experimental designs to study the role of the oviductal micro environment during early embryo development.


Subject(s)
Body Fluids/chemistry , Cattle , Endoscopy/veterinary , Fallopian Tubes/physiology , Proteome/chemistry , Animals , Chromatography, Liquid , Endoscopy/methods , Estrous Cycle/metabolism , Female , Gene Expression Regulation , Proteins/chemistry , Proteins/metabolism , Proteome/metabolism , Tandem Mass Spectrometry
6.
EBioMedicine ; 41: 610-622, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30827932

ABSTRACT

BACKGROUND: We recently demonstrated the increased abundance of anti-trophoblast antibodies (ATAB) in sera of patients with unexplained recurrent miscarriages (uRM). Further, the ATAB-positive sera bound to JEG-3 human choriocarcinoma cells in vitro, resulting in decreased productions of ß-human chorionic gonadotropin (ß-hCG) and progesterone in these cells. However, the specific antigenic epitopes of ATAB have remained unknown. Therefore, it was the aim of this study to determine specific targets of ATAB in uRM patients. METHODS: Potential targets of ATAB were analyzed by 2-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry, and thereby identifying α-Enolase (ENO1). ATAB targeting of ENO1 was further confirmed in a competitive binding assay. Levels of anti-ENO1 antibodies as well as ß-hCG and progesterone were quantified with enzyme-linked immunosorbent assay (ELISA). Additionally, expression of ENO1 was analyzed in first trimester placentas by immunohistochemistry and immunofluorescence analysis. FINDINGS: We here identified ENO1 as a prominent target of ATAB. Serum levels of anti-ENO1 antibodies were increased in ATAB-positive compared to ATAB-negative patients. Further, increased expression of ENO1 and its co-expression with ß-arrestin was found in the extra villous trophoblasts of uRM patients in first trimester placentas. In vitro, anti-ENO1 antibodies decreased the secretion of ß-hCG and progesterone in JEG-3 and primary human villous trophoblast cells. INTERPRETATION: Serum anti-ENO1 antibodies might be an autoimmune biomarker for uRM. Targeting the formation of anti-ENO1 antibodies or inhibition of ENO1 expression could potentially represent therapeutic strategies for these patients. FUND: All authors declare no conflict of interest. Yao Ye was supported by the China Scholarship Council. Hellen Ishikawa-Ankerhold and Christian Schulz were supported by the SFB914, projects Z01 and A10. None of the rest authors has any conflict of interest to declare.


Subject(s)
Abortion, Habitual/diagnosis , Autoantibodies/blood , Autoimmune Diseases/diagnosis , Biomarkers/blood , Phosphopyruvate Hydratase/immunology , Abortion, Habitual/pathology , Cell Line, Tumor , Chorionic Gonadotropin/analysis , Chorionic Gonadotropin/metabolism , Cytokines , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Mass Spectrometry , Microscopy, Confocal , Placenta/metabolism , Placenta/pathology , Plasminogen Activator Inhibitor 1/metabolism , Pregnancy , Progesterone/analysis , Progesterone/metabolism , Trophoblasts/cytology , Trophoblasts/immunology , Trophoblasts/pathology
7.
J Proteomics ; 90: 38-51, 2013 Sep 02.
Article in English | MEDLINE | ID: mdl-23603003

ABSTRACT

Mouse embryonic stem cells (mESC) and mouse epiblast stem cells (mEpiSC) share similar pluripotency factors like NANOG or POU5F1, however, their state of pluripotency differs significantly. mESC and mEpiSC can be derived from embryos generated by fertilization (FT) or by somatic cell nuclear transfer (NT). In this study we performed a 4-plex iTRAQ LC-MS/MS based approach, facilitating the multiplexed comparison of the four indicated types of stem cells. From four replicates of each cell type, 1650 proteins were quantified. 234 non redundant proteins with significant abundance alterations between FT/NT-mESC and FT/NT-mEpiSC, and 44 between FT and NT derived cells were detected. Bioinformatic analysis revealed that several pluripotency associated proteins, among them POU5F1, DNMT3L, TIF1B, and proteins involved in DNA repair like MSH2 and MSH6, are more abundant in mESC compared to mEpiSC. The abundance level of these proteins is not affected by the mode of embryo generation, whereas several cytoskeleton proteins show a higher abundance in NT-mESC compared to FT-mESC. In addition, a number of cytoskeletal proteins are enriched in mEpiSC, e.g., myosins, filamins and intermediate filament proteins, reflecting the progressed differentiation state of epiblast derived versus inner cell mass derived murine pluripotent stem cells. BIOLOGICAL SIGNIFICANCE: This study aims to get new insights in the pluripotency state of stem cells and to deepen the knowledge of early cell differentiation. In an iTRAQ MS approach, we quantitatively compared proteomes of inner cell mass derived stem cells (mESC) with epiblast derived stem cells (mEpiSC). These stem cell types are derived from embryos of different developmental stages, and therefore vary considerably in their state of pluripotency and reflect different stages of early differentiation. The proteins which show significant abundance differences between the two stem cell lines represent (i) promising targets to further decipher molecular processes during early embryo development and (ii) useful molecular markers to monitor early differentiation events of stem cells by targeted approaches.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Germ Layers/metabolism , Pluripotent Stem Cells/metabolism , Proteome/metabolism , Proteomics , Animals , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Germ Layers/cytology , Homeodomain Proteins/metabolism , Mass Spectrometry , Mice , MutS Homolog 2 Protein/metabolism , Nanog Homeobox Protein , Nuclear Proteins/metabolism , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Repressor Proteins/metabolism , Tripartite Motif-Containing Protein 28
8.
Anal Bioanal Chem ; 402(2): 989-95, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22006244

ABSTRACT

Procalcitonin (PCT)-a diagnostic serum parameter for bacterial infection and sepsis-is of great interest in the field of biosensors for point-of-care testing. Its detection needs specific biological recognition elements, such as antibodies. Herein, we describe the development and characterization of rat monoclonal antibodies (mAbs) for PCT, and their application in enzyme-linked immunosorbent assays (ELISAs) for the determination of PCT in patient serum samples. From about 50 mAbs, two mAbs, CALCA 2F3 and CALCA 4A6, were selected as a pair with high affinity for PCT in sandwich immunoassays. Both mAbs could be used either as capture or as detection mAb. They were Protein G-purified and biotinylated when used as detection mAb. The setup of two sandwich ELISAs with standards of human recombinant (hr) PCT, using either CALCA 2F3 (assay A) or CALCA 4A6 (assay B) as capture mAbs and the biotinylated mAbs CALCA 4A6 or CALCA 2F3, respectively, as detection mAbs, led to highly specific determinations of PCT without cross-reactivity to calcitonin and katacalcin. Test midpoints (IC(50)) of both assays were determined for hrPCT standards in 4% (w/v) human serum albumin and found with 2.5 (assay A) and 2.7 µg L(-1) (assay B). With both sandwich ELISAs a collection of eight patient serum samples have been determined in comparison to the determination by the Elecsys BRAHMS PCT assay. Good correlations between our prototype ELISAs and the BRAHMS assay could be demonstrated (R (2): assay A, 0.996 and assay B, 0.990). The use of these newly developed anti-PCT mAbs should find broad applications in immunosensors for point-of-care diagnostics of sepsis and systemic inflammation processes.


Subject(s)
Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/immunology , Calcitonin/blood , Calcitonin/immunology , Protein Precursors/blood , Protein Precursors/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antigen-Antibody Reactions , Blood Chemical Analysis , Calcitonin Gene-Related Peptide , Enzyme-Linked Immunosorbent Assay , Humans , Rats , Recombinant Proteins/blood , Recombinant Proteins/immunology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...