Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Environ Contam Toxicol ; 104(1): 71-77, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31748863

ABSTRACT

Cadmium (Cd) pollution is constantly increasing in agricultural systems due to anthropogenic activities and causes significant reductions in the yield of crop species. In this study, we aimed to determine the effect of Cd stress on growth, element contents, oxidative damage, antioxidant enzyme activities, and genotoxicity in wheat (Triticum aestivum L.). To achieve this goal, 7-day-old wheat seedlings were subjected to different concentrations of Cd(NO3)2·4H2O (250, 500, and 1000 µM) for 4 days. The results show that Cd stress induces growth inhibition, oxidative injury, and genotoxicity in wheat seedlings. Moreover, the highest concentration of Cd treatment led to a significant increase in the activities of antioxidant enzymes, except for catalase. In addition, a dramatic decrease was observed in K and Ca contents in response to Cd treatments. Overall, our findings suggest that even short-term exposure to Cd can impair key physiological processes influencing growth, oxidative homeostasis, and genomic stability in wheat.


Subject(s)
Cadmium/toxicity , Soil Pollutants/toxicity , Triticum/drug effects , Agriculture , Antioxidants/metabolism , Catalase/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Seedlings/drug effects , Superoxide Dismutase/metabolism , Triticum/physiology
2.
Bull Environ Contam Toxicol ; 100(4): 502-508, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29435614

ABSTRACT

Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H2O2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.


Subject(s)
Boron/toxicity , DNA Damage , Oxidative Stress/drug effects , Triticum/drug effects , Dose-Response Relationship, Drug , Hydrogen Peroxide/metabolism , Oxidative Stress/genetics , Plant Roots/drug effects , Plant Roots/genetics , Seedlings/drug effects , Seedlings/genetics , Triticum/genetics
3.
Metabolomics ; 14(11): 143, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30830436

ABSTRACT

INTRODUCTION: It is well known that plant-derived smoke stimulates seed germination and seedling growth in many plants. Although a number of transcriptomics and proteomics studies have been carried out to understand the mode of action of smoke, less is known about the biochemical alterations associated with smoke exposure in plants. OBJECTIVES: The aims of this study were (1) to determine the metabolic alterations in maize roots pre-treated with various concentrations of smoke solution, and (2) to identify the smoke-responsive metabolic pathways during early root growth period. METHODS: Maize seeds were pre-treated with different concentrations of smoke solutions for 24 h and then grown for 10 days. 600-MHz 1H NMR spectroscopy was performed on the aqueous root extracts of maize seedlings. The metabolite data obtained from the NMR spectra were analyzed by several statistical and functional methods, including one-way ANOVA, PCA, PLS-DA and pathway analysis. RESULTS: Our study identified a total of 29 metabolites belonging to various chemical groups. Concentrations of 20 out of these 29 metabolites displayed significant (p < 0.05) changes after at least one smoke pre-treatment compared to the control. Moreover, functional analyses revealed that smoke pre-treatments markedly affected the carbohydrate- and energy-related metabolic pathways, such as galactose metabolism, glycolysis, glyoxylate metabolism, tricarboxylic acid cycle, and starch/sucrose metabolism. CONCLUSIONS: To our knowledge, this is the first study that investigates smoke-induced biochemical alterations in early root growth period using NMR spectroscopy. Our findings clearly indicate that smoke either directly or indirectly influences many metabolic processes in maize roots.


Subject(s)
Carbohydrate Metabolism , Crop Production/methods , Energy Metabolism , Metabolome , Plant Roots/growth & development , Smoke , Zea mays/metabolism , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...