Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(11): e0188389, 2017.
Article in English | MEDLINE | ID: mdl-29176815

ABSTRACT

The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (ß), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, ß, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, ß, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth.


Subject(s)
Ammonium Compounds/metabolism , Photosynthesis , Ulva/growth & development , Ulva/metabolism , Carbon/metabolism , Carbonates/analysis , Chlorophyll/metabolism , Hydrogen-Ion Concentration , Light , Nitrogen/metabolism , Photosynthesis/radiation effects , Seawater , Ulva/radiation effects
2.
PLoS One ; 10(7): e0132806, 2015.
Article in English | MEDLINE | ID: mdl-26172263

ABSTRACT

Seaweeds that lack carbon-concentrating mechanisms are potentially inorganic carbon-limited under current air equilibrium conditions. To estimate effects of increased atmospheric carbon dioxide concentration and ocean acidification on photosynthetic rates, we modeled rates of photosynthesis in response to pCO2, temperature, and their interaction under limiting and saturating photon flux densities. We synthesized the available data for photosynthetic responses of red seaweeds lacking carbon-concentrating mechanisms to light and temperature. The model was parameterized with published data and known carbonate system dynamics. The model predicts that direction and magnitude of response to pCO2 and temperature, depend on photon flux density. At sub-saturating light intensities, photosynthetic rates are predicted to be low and respond positively to increasing pCO2, and negatively to increasing temperature. Consequently, pCO2 and temperature are predicted to interact antagonistically to influence photosynthetic rates at low PFD. The model predicts that pCO2 will have a much larger effect than temperature at sub-saturating light intensities. However, photosynthetic rates under low light will not increase proportionately as pCO2 in seawater continues to rise. In the range of light saturation (Ik), both CO2 and temperature have positive effects on photosynthetic rate and correspondingly strong predicted synergistic effects. At saturating light intensities, the response of photosynthetic rates to increasing pCO2 approaches linearity, but the model also predicts increased importance of thermal over pCO2 effects, with effects acting additively. Increasing boundary layer thickness decreased the effect of added pCO2 and, for very thick boundary layers, overwhelmed the effect of temperature on photosynthetic rates. The maximum photosynthetic rates of strictly CO2-using algae are low, so even large percentage increases in rates with climate change will not contribute much to changing primary production in the habitats where they commonly live.


Subject(s)
Carbon/metabolism , Cyanobacteria/physiology , Seaweed/physiology , Carbon Dioxide/metabolism , Carbonates/metabolism , Climate Change , Cyanobacteria/metabolism , Ecosystem , Hydrogen-Ion Concentration , Light , Oceans and Seas , Photosynthesis/physiology , Seawater , Seaweed/metabolism , Temperature
3.
J Phycol ; 49(2): 271-281, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23772094

ABSTRACT

Species with sexual and asexual life cycles may exhibit intraspecific differences in reproductive effort. The spatial separation of sexual and asexual lineages, called geographic parthenogenesis, is common in plants, animals and algae. Mastocarpus papillatus is a well-documented case of geographic parthenogenesis in which sexuals dominate southern populations, asexuals dominate northern populations, while mixed populations occur throughout central California. We quantified abundances and reproductive effort of sexual and asexual fronds and tetrasporophytes at eight sites in California to test the hypotheses that (1) reduced sexual reproduction at higher latitudes and tidal heights explains the observed geographic parthenogenesis and (2) reproductive effort (spore production per blade area) declines with increasing latitude. Abundances of all phases varied site-specifically. However, there was no geographic pattern of reproductive effort of fronds. Reproductive effort of fronds was greater in 2006 than in 2007 and correlated with sea surface temperatures. Sexual fronds exhibited greater reproductive effort than did asexual fronds and sexual reproductive effort was also inversely correlated with local upwelling index. Tetrasporophytes showed greater reproductive effort in northern sites, but total supply of tetraspores per m2 was greatest in the middle of the sampling range where crusts were more abundant. There was no decline of reproductive effort at higher latitudes. Geographic patterns of fecundity of life stages do not explain geographic parthenogenesis in M. papillatus. Site-specific differences in viability among spores or established thalli of different life cycles may explain their respective geographic distributions, as the sexual and asexual life cycles responded differently to environmental variations.

4.
Phycologia ; 49(3): 274-282, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20802792

ABSTRACT

Species of the genus Mastocarpus exhibit two distinct life cycles, a sexual alternation of generations and an obligate, asexual direct life cycle that produces only female upright fronds. In the intertidal red alga, M. papillatus (Kützing) sexual fronds dominate southern populations and asexual fronds dominate northern populations along the northeast Pacific coast, a pattern of spatial separation called geographic parthenogenesis. Along the central coast of California, sexual and asexual variants occur in mixed populations, but it is not known whether they are spatially separated within the intertidal zone at a given site. We investigated reproductive phenologies and analyzed patterns of spatial distributions of sexual and asexual M. papillatus at three sites in this region. Sexual M. papillatus were aggregated lower on the shore at two sites and only reproduced during part of a year, while asexual M. papillatus occurred throughout the intertidal range at all sites and reproduced throughout the year. The distribution patterns of sexual and asexual M. papillatus are consistent with a hypothesis of shoreline topography influencing their dynamics of dispersal and colonization. Spatial and temporal partitioning may contribute to the long-term coexistence of sexual and asexual life histories in this, and other, species of Mastocarpus. The occurrence of geographic parthenogenesis at multiple spatial scales in M. papillatus provides an opportunity to gain insight into the phenomenon.

5.
Ann Bot ; 90(4): 525-36, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12324277

ABSTRACT

Much evidence suggests that life originated in hydrothermal habitats, and for much of the time since the origin of cyanobacteria (at least 2.5 Ga ago) and of eukaryotic algae (at least 2.1 Ga ago) the average sea surface and land surface temperatures were higher than they are today. However, there have been at least four significant glacial episodes prior to the Pleistocene glaciations. Two of these (approx. 2.1 and 0.7 Ga ago) may have involved a 'Snowball Earth' with a very great impact on the algae (sensu lato) of the time (cyanobacteria, Chlorophyta and Rhodophyta) and especially those that were adapted to warm habitats. By contrast, it is possible that heterokont, dinophyte and haptophyte phototrophs only evolved after the Carboniferous-Permian ice age (approx. 250 Ma ago) and so did not encounter low (

Subject(s)
Biological Evolution , Carbon/metabolism , Seaweed/physiology , Antarctic Regions , Arctic Regions , Bicarbonates/metabolism , Carbon Dioxide/metabolism , Chlorophyta/growth & development , Chlorophyta/radiation effects , Cold Temperature , Cyanobacteria/classification , Cyanobacteria/growth & development , Earth, Planet , Eukaryotic Cells/physiology , Hot Temperature , Marine Biology , Models, Biological , Oceans and Seas , Oxygen/metabolism , Phaeophyceae/classification , Phaeophyceae/growth & development , Phaeophyceae/radiation effects , Photosynthesis/physiology , Phytoplankton/classification , Phytoplankton/growth & development , Rhodophyta/growth & development , Rhodophyta/radiation effects , Seaweed/classification , Seaweed/radiation effects , Symbiosis/physiology , Water/metabolism
6.
Funct Plant Biol ; 29(3): 355-378, 2002 Apr.
Article in English | MEDLINE | ID: mdl-32689482

ABSTRACT

The literature, and previously unpublished data from the authors' laboratories, shows that the δ13C of organic matter in marine macroalgae and seagrasses collected from the natural environment ranges from -3 to -35‰. While some marine macroalgae have δ13C values ranging over more than 10‰ within the thallus of an individual (some brown macroalgae), in other cases the range within a species collected over a very wide geographical range is only 5‰ (e.g. the red alga Plocamium cartilagineum which has values between -30 and -35‰). The organisms with very negative δ13C (lower than -30‰) are mainly subtidal red algae, with some intertidal red algae and a few green algae; those with very positive δ13C values (higher than -10‰) are mainly green macroalgae and seagrasses, with some red and brown macroalgae. The δ13C value correlates primarily with taxonomy and secondarily with ecology. None of the organisms with δ13C values lower than -30‰ have pyrenoids. Previous work showed a good correlation between δ13C values lower than -30‰ and the lack of CO2 concentrating mechanisms for several species of marine red algae. The extent to which the low δ13C values are confined to organisms with diffusive CO2 entry is discussed. Diffusive CO2 entry could also occur in organisms with higher δ13C values if diffusive conductance was relatively low. The photosynthesis of organisms with δ13C values more positive than -10‰ (i.e. more positive than the δ13C of CO2 in seawater) must involve HCO3- use.

SELECTION OF CITATIONS
SEARCH DETAIL
...