Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(8): 083203, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36898121

ABSTRACT

Light forces can be harnessed to levitate mesoscopic objects and cool them down toward their motional quantum ground state. Roadblocks on the way to scale up levitation from a single to multiple particles in close proximity are the requirements to constantly monitor the particles' positions as well as to engineer light fields that react fast and appropriately to their movements. Here, we present an approach that solves both problems at once. By exploiting the information stored in a time-dependent scattering matrix, we introduce a formalism enabling the identification of spatially modulated wavefronts, which simultaneously cool down multiple objects of arbitrary shapes. An experimental implementation is suggested based on stroboscopic scattering-matrix measurements and time-adaptive injections of modulated light fields.

2.
Nature ; 607(7918): 281-286, 2022 07.
Article in English | MEDLINE | ID: mdl-35831599

ABSTRACT

The scattering of waves when they propagate through disordered media is an important limitation for a range of applications, including telecommunications1, biomedical imaging2, seismology3 and material engineering4,5. Wavefront shaping techniques can reduce the effect of wave scattering, even in opaque media, by engineering specific modes-termed open transmission eigenchannels-through which waves are funnelled across a disordered medium without any back reflection6-9. However, with such channels being very scarce, one cannot use them to render an opaque sample perfectly transmitting for any incident light field. Here we show that a randomly disordered medium becomes translucent to all incoming light waves when placing a tailored complementary medium in front of it. To this end, the reflection matrices of the two media surfaces facing each other need to satisfy a matrix generalization of the condition for critical coupling. We implement this protocol both numerically and experimentally for the design of electromagnetic waveguides with several dozen scattering elements placed inside them. The translucent scattering media we introduce here also have the promising property of being able to store incident radiation in their interior for remarkably long times.

3.
Phys Rev Lett ; 127(23): 233201, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34936787

ABSTRACT

Determining the ultimate precision limit for measurements on a subwavelength particle with coherent laser light is a goal with applications in areas as diverse as biophysics and nanotechnology. Here, we demonstrate that surrounding such a particle with a complex scattering environment does, on average, not have any influence on the mean quantum Fisher information associated with measurements on the particle. As a remarkable consequence, the average precision that can be achieved when estimating the particle's properties is the same in the ballistic and in the diffusive scattering regime, independently of the particle's position within its nonabsorbing environment. This invariance law breaks down only in the regime of Anderson localization, due to increased C_{0}-speckle correlations. Finally, we show how these results connect to the mean quantum Fisher information achievable with spatially optimized input fields.

4.
Phys Rev Lett ; 127(9): 093903, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506182

ABSTRACT

Speckle patterns are ubiquitous in optics and have multiple applications for which the control of their spatial correlations is essential. Here, we report on a method to engineer speckle correlations behind a scattering medium through the singular value decomposition of the transmission matrix. We not only demonstrate control over the speckle grain size and shape but also realize patterns with nonlocal correlations. Moreover, we show that the reach of our method extends also along the axial dimension, allowing volumetric speckle engineering behind scattering layers.

5.
Nature ; 567(7748): 351-355, 2019 03.
Article in English | MEDLINE | ID: mdl-30833737

ABSTRACT

Non-Hermitian wave engineering is a recent and fast-moving field that examines both fundamental and application-oriented phenomena1-7. One such phenomenon is coherent perfect absorption8-11-an effect commonly referred to as 'anti-lasing' because it corresponds to the time-reversed process of coherent emission of radiation at the lasing threshold (where all radiation losses are exactly balanced by the optical gain). Coherent perfect absorbers (CPAs) have been experimentally realized in several setups10-18, with the notable exception of a CPA in a disordered medium (a medium without engineered structure). Such a 'random CPA' would be the time-reverse of a 'random laser'19,20, in which light is resonantly enhanced by multiple scattering inside a disorder. Because of the complexity of this scattering process, the light field emitted by a random laser is also spatially complex and not focused like a regular laser beam. Realizing a random CPA (or 'random anti-laser') is therefore challenging because it requires the equivalent of time-reversing such a light field in all its degrees of freedom to create coherent radiation that is perfectly absorbed when impinging on a disordered medium. Here we use microwave technology to build a random anti-laser and demonstrate its ability to absorb suitably engineered incoming radiation fields with near-perfect efficiency. Because our approach to determining these field patterns is based solely on far-field measurements of the scattering properties of a disordered medium, it could be suitable for other applications in which waves need to be perfectly focused, routed or absorbed.

6.
Phys Rev Lett ; 119(3): 033903, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28777626

ABSTRACT

We introduce a wave front shaping protocol for focusing inside disordered media based on a generalization of the established Wigner-Smith time-delay operator. The key ingredient for our approach is the scattering (or transmission) matrix of the medium and its derivative with respect to the position of the target one aims to focus on. A specific experimental realization in the microwave regime is presented showing that the eigenstates of a corresponding operator are sorted by their focusing strength-ranging from strongly focusing on the designated target to completely bypassing it. Our protocol works without optimization or phase conjugation and we expect it to be particularly attractive for optical imaging in disordered media.

SELECTION OF CITATIONS
SEARCH DETAIL
...