Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 16320, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770510

ABSTRACT

As part of the energy transition in Germany, high-voltage overhead power lines will be operated using hybrid systems that combine alternating and direct current (AC and DC). The degree to which humans perceive hybrid electric fields (EFs) is dependent on the proportion of both EF types. To investigate the impact of the DC component, a study assessed 49 participants with above-average EF detection ability under conditions with a low DC component of 1-4 kilovolts per meter (kV/m) and varying AC EFs between 1 and 14 kV/m. The detection thresholds of combined AC/DC EFs decreased with an increase in the DC component and ranged from 9.6 to 6.83 kV/m on average for the group. The results suggest that even minor variations in the DC component significantly affect human perception of hybrid EFs. These findings complement the results of an earlier study that investigated the AC component in hybrid EFs. Correlational analyses of both studies demonstrated the reliability of participants' performance. This study contributes to our understanding of EF-related effects on human perception and can aid in the planning of energy transmission near areas where humans work or live.


Subject(s)
Actinium , Electricity , Humans , Reproducibility of Results , Germany , Perception
2.
Mol Ecol Resour ; 15(2): 295-305, 2015 03.
Article in English | MEDLINE | ID: mdl-25042673

ABSTRACT

Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single-nucleotide polymorphism (SNP)-based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost-effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring.


Subject(s)
Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Wolves/classification , Wolves/genetics , Animals , Costs and Cost Analysis , Europe , Genotyping Techniques/economics , Time Factors
3.
J Exp Biol ; 215(Pt 18): 3137-41, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22660788

ABSTRACT

Nuclear magnetic resonance (NMR) microscopy allows us to image and quantify the distribution of NMR-active nuclei in living specimens. Using high-field NMR microscopy at a magnetic field strength of 14.1 T and strong gradients up to 3 T m(-1), we show that separation of fat and water nuclear resonances in living insects can be achieved. In contrast to destructive conventional photometric and mass measurements, we demonstrate exemplarily in the European spruce bark beetle that NMR can be efficiently used to quantify absolute fat and water content in living insects. Additionally, anatomic images with a spatial in-plane resolution up to 10 µm and with high soft tissue contrast were acquired. We demonstrate that fat distribution and fat consumption of living insects can be obtained by magnetic resonance imaging (MRI). This enables future research to address questions where single individuals have to be measured several times, which is not possible with conventional destructive methods.


Subject(s)
Coleoptera/metabolism , Lipids/analysis , Magnetic Resonance Spectroscopy/methods , Microscopy/methods , Animals , Coleoptera/anatomy & histology , Flight, Animal/physiology , Plant Bark
SELECTION OF CITATIONS
SEARCH DETAIL
...