Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32373544

ABSTRACT

Reactivation of latent cytomegalovirus (CMV) in recipients of hematopoietic cell transplantation (HCT) not only results in severe organ manifestations, but can also cause "graft failure" resulting in bone marrow (BM) aplasia. This inhibition of hematopoietic stem and progenitor cell engraftment is a manifestation of CMV infection that is long known in clinical hematology as "myelosuppression." Previous studies in a murine model of sex-chromosome mismatched but otherwise syngeneic HCT and infection with murine CMV have shown that transplanted hematopoietic cells (HC) initially home to the BM stroma of recipients but then fail to further divide and differentiate. Data from this model were in line with the hypothesis that infection of stromal cells, which constitute "hematopoietic niches" where hematopoiesis takes place, causes a local deficiency in essential hematopoietins. Based on this understanding, one must postulate that preventing infection of stromal cells should restore the stroma's capacity to support hematopoiesis. Adoptively-transferred antiviral CD8+ T cells prevent lethal CMV disease by controlling viral spread and histopathology in vital organs, such as liver and lungs. It remained to be tested, however, if they can also prevent infection of the BM stroma and thus allow for successful HC engraftment. Here we demonstrate that antiviral CD8+ T cells control stromal infection. By tracking male donor-derived sry+ HC in the BM of infected female sry- recipients, we show the CD8+ T cells allow for successful donor HC engraftment and thereby prevent CMV-associated BM aplasia. These data provide a further argument for cytoimmunotherapy of CMV infection after HCT.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Animals , Antiviral Agents , CD8-Positive T-Lymphocytes , Female , Hematopoiesis , Male , Mice
2.
Med Microbiol Immunol ; 208(3-4): 439-446, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31004200

ABSTRACT

Roizman's definition of herpesviral latency, which applies also to cytomegaloviruses (CMVs), demands maintenance of reactivation-competent viral genomes after clearance of productive infection. It is more recent understanding that failure to complete the productive viral cycle for virus assembly and release does not imply viral gene silencing at all genetic loci and all the time. It rather appears that CMV latency is transcriptionally "noisy" in that silenced viral genes get desilenced from time to time in a stochastic manner, leading to "transcripts expressed in latency" (TELs). If a TEL happens to code for a protein that contains a CD8 T cell epitope, protein processing can lead to the presentation of the antigenic peptide and restimulation of cognate CD8 T cells during latency. This mechanism is discussed as a potential driver of epitope-selective accumulation of CD8 T cells over time, a phenomenon linked to CMV latency and known as "memory inflation" (MI). So far, expression of an epitope-encoding TEL was shown only for the major immediate-early (MIE) gene m123/ie1 of murine cytomegalovirus (mCMV), which codes for the prototypic MI-driving antigenic peptide YPHFMPTNL that is presented by the MHC class-I molecule Ld. The only known second MI-driving antigenic peptide of mCMV in the murine MHC haplotype H-2d is AGPPRYSRI presented by the MHC-I molecule Dd. This peptide is very special in that it is encoded by the early (E) phase gene m164 and by an overlapping immediate-early (IE) transcript governed by a promoter upstream of m164. If MI is driven by presentation of TEL-derived antigenic peptides, as the hypothesis says, one should find corresponding TELs. We show here that E-phase and IE-phase transcripts that code for the MI-driving antigenic peptide AGPPRYSRI are independently and stochastically expressed in latently infected lungs.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Gene Expression Profiling , Muromegalovirus/immunology , Virus Latency , Animals , Antigens, Viral/biosynthesis , Disease Models, Animal , Epitopes/biosynthesis , Epitopes/immunology , Immunologic Memory , Muromegalovirus/growth & development
3.
Med Microbiol Immunol ; 201(4): 551-66, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22991040

ABSTRACT

Low public awareness of cytomegalovirus (CMV) results from the only mild and transient symptoms that it causes in the healthy immunocompetent host, so that primary infection usually goes unnoticed. The virus is not cleared, however, but stays for the lifetime of the host in a non-infectious, replicatively dormant state known as 'viral latency'. Medical interest in CMV results from the fact that latent virus can reactivate to cytopathogenic, tissue-destructive infection causing life-threatening end-organ disease in immunocompromised recipients of solid organ transplantation (SOT) or hematopoietic cell transplantation (HCT). It is becoming increasingly clear that CMV latency is not a static state in which the viral genome is silenced at all its genetic loci making the latent virus immunologically invisible, but rather is a dynamic state characterized by stochastic episodes of transient viral gene desilencing. This gene expression can lead to the presentation of antigenic peptides encoded by 'antigenicity-determining transcripts expressed in latency (ADTELs)' sensed by tissue-patrolling effector-memory CD8 T cells for immune surveillance of latency [In Reddehase et al., Murine model of cytomegalovirus latency and reactivation, Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 315-331, 2008]. A hallmark of the CD8 T cell response to CMV is the observation that with increasing time during latency, CD8 T cells specific for certain viral epitopes increase in numbers, a phenomenon that has gained much attention in recent years and is known under the catchphrase 'memory inflation.' Here, we provide a unifying hypothesis linking stochastic viral gene desilencing during latency to 'memory inflation.'


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Cytomegalovirus/pathogenicity , Immunologic Memory , Virus Latency/immunology , Animals , Disease Models, Animal , Humans , Mice
4.
J Gen Virol ; 90(Pt 10): 2395-2401, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19553390

ABSTRACT

Major immediate-early (MIE) transcriptional enhancers of cytomegaloviruses are key regulators that are regarded as determinants of virus replicative fitness and pathogenicity. The MIE locus of murine cytomegalovirus (mCMV) shows bidirectional gene-pair architecture, with a bipartite enhancer flanked by divergent core promoters. Here, we have constructed recombinant viruses mCMV-DeltaEnh1 and mCMV-DeltaEnh2 to study the impact of either enhancer component on bidirectional MIE gene transcription and on virus replication in cell culture and various host tissues that are relevant to CMV disease. The data revealed that the two unipartite enhancers can operate independently, but synergize in enhancing MIE gene expression early after infection. Kick-start transcription facilitated by the bipartite enhancer configuration, however, did not ultimately result in accelerated virus replication. We conclude that virus replication, once triggered, proceeds with a fixed speed and we propose that synergism between the components of the bipartite enhancer may rather increase the probability for transcription initiation.


Subject(s)
Antigens, Viral/metabolism , Enhancer Elements, Genetic/physiology , Gene Expression Regulation, Viral/physiology , Immediate-Early Proteins/metabolism , Virus Replication/physiology , Animals , Antigens, Viral/genetics , Cells, Cultured , DNA Replication/physiology , DNA, Viral/genetics , DNA, Viral/physiology , Fibroblasts/virology , Immediate-Early Proteins/genetics , Immunocompromised Host , Mice , Transcription, Genetic
5.
J Virol ; 83(17): 8869-84, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19535440

ABSTRACT

Latent cytomegalovirus (CMV) is frequently transmitted by organ transplantation, and its reactivation under conditions of immunosuppressive prophylaxis against graft rejection by host-versus-graft disease bears a risk of graft failure due to viral pathogenesis. CMV is the most common cause of infection following liver transplantation. Although hematopoietic cells of the myeloid lineage are a recognized source of latent CMV, the cellular sites of latency in the liver are not comprehensively typed. Here we have used the BALB/c mouse model of murine CMV infection to identify latently infected hepatic cell types. We performed sex-mismatched bone marrow transplantation with male donors and female recipients to generate latently infected sex chromosome chimeras, allowing us to distinguish between Y-chromosome (gene sry or tdy)-positive donor-derived hematopoietic descendants and Y-chromosome-negative cells of recipients' tissues. The viral genome was found to localize primarily to sry-negative CD11b(-) CD11c(-) CD31(+) CD146(+) cells lacking major histocompatibility complex class II antigen (MHC-II) but expressing murine L-SIGN. This cell surface phenotype is typical of liver sinusoidal endothelial cells (LSECs). Notably, sry-positive CD146(+) cells were distinguished by the expression of MHC-II and did not harbor latent viral DNA. In this model, the frequency of latently infected cells was found to be 1 to 2 per 10(4) LSECs, with an average copy number of 9 (range, 4 to 17) viral genomes. Ex vivo-isolated, latently infected LSECs expressed the viral genes m123/ie1 and M122/ie3 but not M112-M113/e1, M55/gB, or M86/MCP. Importantly, in an LSEC transfer model, infectious virus reactivated from recipients' tissue explants with an incidence of one reactivation per 1,000 viral-genome-carrying LSECs. These findings identified LSECs as the main cellular site of murine CMV latency and reactivation in the liver.


Subject(s)
Endothelial Cells/virology , Liver/virology , Muromegalovirus/physiology , Virus Activation , Virus Latency , Animals , Female , Gene Expression Profiling , Genes, Viral , Male , Mice , Mice, Inbred BALB C
6.
J Virol ; 82(12): 5781-96, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18367531

ABSTRACT

Cytomegalovirus (CMV) infection continues to be a complication in recipients of hematopoietic stem cell transplantation (HSCT). Preexisting donor immunity is recognized as a favorable prognostic factor for the reconstitution of protective antiviral immunity mediated primarily by CD8 T cells. Furthermore, adoptive transfer of CMV-specific memory CD8 T (CD8-T(M)) cells is a therapeutic option for preventing CMV disease in HSCT recipients. Given the different CMV infection histories of donor and recipient, a problem may arise from an antigenic mismatch between the CMV variant that has primed donor immunity and the CMV variant acquired by the recipient. Here, we have used the BALB/c mouse model of CMV infection in the immunocompromised host to evaluate the importance of donor-recipient CMV matching in immundominant epitopes (IDEs). For this, we generated the murine CMV (mCMV) recombinant virus mCMV-DeltaIDE, in which the two memory repertoire IDEs, the IE1-derived peptide 168-YPHFMPTNL-176 presented by the major histocompatibility complex class I (MHC-I) molecule L(d) and the m164-derived peptide 257-AGPPRYSRI-265 presented by the MHC-I molecule D(d), are both functionally deleted. Upon adoptive transfer, polyclonal donor CD8-T(M) cells primed by mCMV-DeltaIDE and the corresponding revertant virus mCMV-revDeltaIDE controlled infection of immunocompromised recipients with comparable efficacy and regardless of whether or not IDEs were presented in the recipients. Importantly, CD8-T(M) cells primed under conditions of immunodomination by IDEs protected recipients in which IDEs were absent. This shows that protection does not depend on compensatory expansion of non-IDE-specific CD8-T(M) cells liberated from immunodomination by the deletion of IDEs. We conclude that protection is, rather, based on the collective antiviral potential of non-IDEs independent of the presence or absence of IDE-mediated immunodomination.


Subject(s)
Adoptive Transfer , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Herpesviridae Infections/immunology , Muromegalovirus/immunology , Animals , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Disease Models, Animal , Female , Fibroblasts/virology , Immunodominant Epitopes/genetics , Kinetics , Mice , Mice, Inbred BALB C , Viral Proteins/genetics , Viral Proteins/metabolism
7.
J Virol ; 81(14): 7805-10, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17494084

ABSTRACT

Enhancers are defined as DNA elements that increase transcription when placed in any orientation relative to a promoter. The major immediate-early (MIE) enhancer region of murine cytomegalovirus is flanked by transcription units ie1/3 and ie2, which are transcribed in opposite directions. We have addressed the fundamental mechanistic question of whether the enhancer synchronizes transcription of the bidirectional gene pair (synchronizer model) or whether it operates as a genetic switch, enhancing transcription of either gene in a stochastic alternation (switch model). Clonal analysis of cytokine-triggered, transcription factor-mediated MIE gene expression from latent viral genomes provided evidence in support of the switch model.


Subject(s)
Cytomegalovirus/genetics , Enhancer Elements, Genetic , Genes, Immediate-Early , Transcription, Genetic , Animals , Base Sequence , DNA Primers , Mice , Mice, Inbred BALB C
8.
J Virol ; 80(21): 10436-56, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16928768

ABSTRACT

During murine cytomegalovirus (mCMV) latency in the lungs, most of the viral genomes are transcriptionally silent at the major immediate-early locus, but rare and stochastic episodes of desilencing lead to the expression of IE1 transcripts. This low-frequency but perpetual expression is accompanied by an activation of lung-resident effector-memory CD8 T cells specific for the antigenic peptide 168-YPHFMPTNL-176, which is derived from the IE1 protein. These molecular and immunological findings were combined in the "silencing/desilencing and immune sensing hypothesis" of cytomegalovirus latency and reactivation. This hypothesis proposes that IE1 gene expression proceeds to cell surface presentation of the IE1 peptide by the major histocompatibility complex (MHC) class I molecule L(d) and that its recognition by CD8 T cells terminates virus reactivation. Here we provide experimental evidence in support of this hypothesis. We generated mutant virus mCMV-IE1-L176A, in which the antigenic IE1 peptide is functionally deleted by a point mutation of the C-terminal MHC class I anchor residue Leu into Ala. Two revertant viruses, mCMV-IE1-A176L and the wobble nucleotide-marked mCMV-IE1-A176L*, in which Leu is restored by back-mutation of Ala codon GCA into Leu codons CTA and CTT, respectively, were constructed. Pulmonary latency of the mutant virus was found to be associated with an increased prevalence of IE1 transcription and with events of IE3 transactivator splicing. In conclusion, IE1-specific CD8 T cells recognize and terminate virus reactivation in vivo at the first opportunity in the reactivated gene expression program. The perpetual gene expression and antigen presentation might represent the driving molecular force in CMV-associated immunosenescence.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Lung/immunology , Lung/virology , Muromegalovirus/immunology , Amino Acid Sequence , Amino Acid Substitution , Animals , Antigens, Viral/genetics , Base Sequence , Bone Marrow Transplantation , DNA, Viral/genetics , Epitopes/genetics , Female , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Immediate-Early Proteins/genetics , Immediate-Early Proteins/immunology , Immunocompromised Host , Mice , Mice, Inbred BALB C , Models, Biological , Muromegalovirus/genetics , Muromegalovirus/pathogenicity , Muromegalovirus/physiology , Mutagenesis, Site-Directed , Phenotype , Trans-Activators/genetics , Trans-Activators/immunology , Transcriptional Activation , Virus Latency , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...