Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Cell Biochem ; 124(11): 1734-1748, 2023 11.
Article in English | MEDLINE | ID: mdl-37796142

ABSTRACT

The pathogenic complexity of Alzheimer's disease (AD) demands the development of multitarget-directed agents aiming at improving actual pharmacotherapy. Based on the cholinergic hypothesis and considering the well-established role of butyrylcholinesterase (BuChE) in advanced stages of AD, the chemical structure of the acetylcholinesterase (AChE) inhibitor drug donepezil (1) was rationally modified for the design of new N-benzyl-piperidine derivatives (4a-d) as potential multitarget-direct AChE and BuChE inhibitors. The designed analogues were further studied through the integration of in silico and in vitro methods. ADMET predictions showed that 4a-d are anticipated to be orally bioavailable, able to cross the blood-brain barrier and be retained in the brain, and to have low toxicity. Computational docking and molecular dynamics indicated the formation of favorable complexes between 4a-d and both cholinesterases. Derivative 4a presented the lowest binding free energy estimation due to interaction with key residues from both target enzymes (-36.69 ± 4.47 and -32.23 ± 3.99 kcal/mol with AChE and BuChE, respectively). The in vitro enzymatic assay demonstrated that 4a was the most potent inhibitor of AChE (IC50 2.08 ± 0.16 µM) and BuChE (IC50 7.41 ± 0.44 µM), corroborating the in silico results and highlighting 4a as a novel multitarget-directed AChE/BuChE inhibitor.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Humans , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/therapeutic use , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/therapeutic use , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Piperidines/pharmacology , Piperidines/therapeutic use , Structure-Activity Relationship , Molecular Docking Simulation
2.
RSC Med Chem ; 13(5): 568-584, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35694691

ABSTRACT

A new series of eight multifunctional thalidomide-donepezil hybrids were synthesized based on the multi-target-directed ligand strategy and evaluated as potential neuroprotective, cholinesterase inhibitors and anti-neuroinflammatory agents against neurodegenerative diseases. A molecular hybridization approach was used for structural design by combining the N-benzylpiperidine pharmacophore of donepezil and the isoindoline-1,3-dione fragment from the thalidomide structure. The most promising compound, PQM-189 (3g), showed good AChE inhibitory activity with an IC50 value of 3.15 µM, which was predicted by docking studies as interacting with the enzyme in the same orientation observed in the AChE-donepezil complex and a similar profile of interaction. Additionally, compound 3g significantly decreased iNOS and IL-1ß levels by 43% and 39%, respectively, after 24 h of incubation with lipopolysaccharide. In vivo data confirmed the ability of 3g to prevent locomotor impairment and changes in feeding behavior elicited by lipopolysaccharide. Moreover, the PAMPA assay evidenced adequate blood-brain barrier and gastrointestinal tract permeabilities with an Fa value of 69.8%. Altogether, these biological data suggest that compound 3g can treat the inflammatory process and oxidative stress resulting from the overexpression of iNOS and therefore the increase in reactive nitrogen species, and regulate the release of pro-inflammatory cytokines such as IL-1ß. In this regard, compound PQM-189 (3g) was revealed to be a promising neuroprotective and anti-neuroinflammatory agent with an innovative thalidomide-donepezil-based hybrid molecular architecture.

3.
Curr Top Med Chem ; 22(5): 366-394, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35105288

ABSTRACT

Cardiovascular diseases (CVDs) comprise a group of diseases and disorders of the heart and blood vessels, which together are the number one cause of death worldwide, being associated with multiple genetic and modifiable risk factors, and that may directly arise from different etiologies. For a long time, the search for cardiovascular drugs was based on the old paradigm "one compound - one target", aiming to obtain a highly potent and selective molecule with only one desired molecular target. Although historically successful in the last decades, this approach ignores the multiple causes and the multifactorial nature of CVDs. Thus, over time, treatment strategies for cardiovascular diseases have changed, and, currently, pharmacological therapies for CVD are mainly based on the association of two or more drugs to control symptoms and reduce cardiovascular death. In this context, the development of multitarget drugs, i.e., compounds having the ability to act simultaneously at multiple sites, is an attractive and relevant strategy that can be even more advantageous to achieve predictable pharmacokinetic and pharmacodynamics correlations as well as better patient compliance. In this review, we aim to highlight the efforts and rational pharmacological bases for the design of some promising multitargeted compounds to treat important cardiovascular diseases like heart failure, atherosclerosis, acute myocardial infarction, pulmonary arterial hypertension, and arrhythmia.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Myocardial Infarction , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Drug Delivery Systems , Humans
4.
Eur J Med Chem ; 212: 113123, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33412421

ABSTRACT

Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Drug Design , Heart Failure/drug therapy , Phosphodiesterase Inhibitors/pharmacology , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Animals , Heart Failure/metabolism , Humans , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry
5.
Neurochem Res ; 45(12): 3003-3020, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33079324

ABSTRACT

A new series of ten multifunctional Cinnamoyl-N-acylhydrazone-donepezil hybrids was synthesized and evaluated as multifunctional ligands against neurodegenerative diseases. The molecular hybridization approach was based on the combination of 1-benzyl-4-piperidine fragment from the anti-Alzheimer AChE inhibitor donepezil (1) and the cinnamoyl subunit from curcumin (2), a natural product with remarkable antioxidant, neuroprotective and anti-inflammatory properties, using a N-acylhydrazone fragment as a spacer subunit. Compounds 4a and 4d showed moderate inhibitory activity towards AChE with IC50 values of 13.04 and 9.1 µM, respectively. In addition, compound 4a and 4d showed a similar predicted binding mode to that observed for donepezil in the molecular docking studies. On the other hand, compounds 4a and 4c exhibited significant radical scavenging activity, showing the best effects on the DPPH test and also exhibited a significant protective neuronal cell viability exposed to t-BuOOH and against 6-OHDA insult to prevent the oxidative stress in Parkinson's disease. Similarly, compound 4c was capable to prevent the ROS formation, with indirect antioxidant activity increasing intracellular GSH levels and the ability to counteract the neurotoxicity induced by both OAß1-42 and 3-NP. In addition, ADMET in silico prediction indicated that both compounds 4a and 4c did not show relevant toxic effects. Due to their above-mentioned biological properties, compounds 4a and 4c could be explored as lead compounds in search of more effective and low toxic small molecules with multiple neuroprotective effects for neurodegenerative diseases.


Subject(s)
Cinnamates/pharmacology , Donepezil/pharmacology , Hydrazones/pharmacology , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cell Line, Tumor , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/pharmacology , Cinnamates/chemical synthesis , Cinnamates/metabolism , Cinnamates/pharmacokinetics , Donepezil/chemical synthesis , Donepezil/metabolism , Donepezil/pharmacokinetics , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacokinetics , Free Radical Scavengers/pharmacology , Humans , Hydrazones/chemical synthesis , Hydrazones/metabolism , Hydrazones/pharmacokinetics , Ligands , Molecular Docking Simulation , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacokinetics , Protein Binding , Structure-Activity Relationship
6.
Molecules ; 25(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664425

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves different pathogenic mechanisms. In this regard, the goal of this study was the design and synthesis of new compounds with multifunctional pharmacological activity by molecular hybridization of structural fragments of curcumin and resveratrol connected by an N-acyl-hydrazone function linked to a 1,4-disubstituted triazole system. Among these hybrid compounds, derivative 3e showed the ability to inhibit acetylcholinesterase activity, the intracellular formation of reactive oxygen species as well as the neurotoxicity elicited by Aß42 oligomers in neuronal SH-SY5Y cells. In parallel, compound 3e showed a good profile of safety and ADME parameters. Taken together, these results suggest that 3e could be considered a lead compound for the further development of AD therapeutics.


Subject(s)
Alzheimer Disease/drug therapy , Triazoles/chemistry , Triazoles/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cells, Cultured , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/pharmacology , Curcumin/pharmacokinetics , Curcumin/pharmacology , Humans , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Pharmacokinetics , Reactive Oxygen Species/metabolism , Resveratrol/pharmacokinetics , Resveratrol/pharmacology , Triazoles/pharmacokinetics
7.
J Enzyme Inhib Med Chem ; 34(1): 631-637, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30727776

ABSTRACT

A series of 3-substituted-7-aminoalcoxy-coumarin was designed and evaluated as cholinesterase inhibitors and antioxidants. All compounds were effective in inhibiting AChE with potencies in the nanomolar range. The 3-(4-(dimethylamino)phenyl)-7-aminoethoxy-coumarin (6a) was considered a hit, showing good AChE inhibition potency (IC50 = 20 nM) and selectivity (IC50 BuChE/AChE = 354), quite similar to the reference drug donepezil (IC50 = 6 nM; IC50 BuChE/AChE = 365), also presenting antioxidant properties, low citotoxicity and good-predicted ADMET properties. The mode of action (mixed-type) and SAR analysis for this series of compounds were described by means of kinetic and molecular modeling evaluations.


Subject(s)
Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Coumarins/pharmacology , Drug Discovery , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Electrophorus , Horses , Mice , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
8.
RSC Adv ; 9(35): 20356-20369, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-35514684

ABSTRACT

Herein we describe the development of an efficient one-pot regioselective synthesis protocol to obtain N-protected or N-deprotected 1,5-diaryl-3-amino-1,2,4-triazoles from N-acyl-N-Boc-carbamidothioates. This improved protocol using microwave irradiation and low reaction times (up to 1 h) furnished desired compounds in yields ranging from 50 to 84%. This chemistry is useful for a variety of aromatic groups with electronically diverse substituents. The design and correct derivation of the amino group led to compounds able to inhibit cholinesterases with good IC50 of up to 1 µM. Also, the mode of action (mixed-type) and SAR analysis for this series of compounds was described by means of kinetic and molecular modelling evaluations, showing potential for this class of compounds as new scaffolds for this biological activity.

9.
Curr Top Med Chem ; 18(2): 124-148, 2018.
Article in English | MEDLINE | ID: mdl-29595110

ABSTRACT

Coumarins are natural products characterized as 1,2 benzopyrones widely distributed in plants, as well as, in many species of fungi and bacteria. Nowadays, many synthetic procedures allow the discovery of coumarins with expanded chemical space. The ability to exert noncovalent interactions with many enzymes and receptors in live organisms lead the coumarins to exhibit a wide range of biological activities and applications. Then, this manuscript provides an overview of the use of coumarins compounds in medicinal chemistry in treating many diseases. Important examples of the last years have been selected concerning the activities of coumarins as anticoagulant, anticancer, antioxidant, antiviral, anti-diabetics, anti-inflammatory, antibacterial, antifungal and anti-neurodegerative agents. Additionally, it also includes applications of coumarins as fluorescent sensors for biological systems. Thus, this work aims to contribute to the development of new rational research projects for the treatment and diagnosis of pathologies using coumarin derivatives.


Subject(s)
Coumarins/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anticoagulants/chemical synthesis , Anticoagulants/chemistry , Anticoagulants/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Chemistry, Pharmaceutical , Coumarins/chemical synthesis , Coumarins/chemistry , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology
10.
Fundam Clin Pharmacol ; 28(1): 29-41, 2014 Feb.
Article in English | MEDLINE | ID: mdl-22958093

ABSTRACT

New bioactive N-acylhydrazone derivatives synthesized from safrole previously have been found to promote intense vasodilation and antihypertensive activity. In this study, we describe the synthesis and the cardiovascular effects of the new N-acylhydrazone derivative (E)-N-methyl-N'-(thiophen-3-ylmethylene)benzo[d][1,3]dioxole-5-carbohydrazide (LASSBio-1289). Thoracic aorta and left papillary muscles from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were prepared for isometric tension recording. LASSBio-1289 promoted relaxation of endothelium-intact and denuded aortic rings with respective pIC50 (-log IC50) values of 5.07 ± 0.09 and 4.26 ± 0.09 (P < 0.001) for WKY rats and 5.43 ± 0.05 and 5.58 ± 0.07 (P > 0.05) for SHR. The vasodilator activity of LASSBio-1289 was increased in the KCl-contracted aorta. LASSBio-1289 attenuated the contracture elicited by Ca(2+) in depolarized aorta from both WKY rats and SHR. In endothelium-intact aorta from WKY rats, LASSBio-1289-induced relaxation was unchanged after incubation with propranolol, ZM 241385, atropine, diphenhydramine, and HOE140, but was significantly reduced by L-NAME and ODQ. LASSBio-1289 decreased papillary muscles contractility only at concentrations above 200 µm. Acute intravenous injection of LASSBio-1289 (3 mg/kg) produced a significant hypotensive response in SHR but not in WKY rats, suggesting its antihypertensive profile. The antihypertensive effect was also observed in SHR during 14 days of intraperitoneal and oral administration. In conclusion, our data demonstrated that LASSBio-1289 induces both endothelium-independent vasorelaxation involving the inhibition of Ca(2+) influx through L-type Ca(2+) channels in aorta from WKY rats and SHR, and endothelium-dependent relaxation mediated by the NO/cyclic GMP pathway in WKY rats.


Subject(s)
Antihypertensive Agents/pharmacology , Benzodioxoles/pharmacology , Calcium Channels, L-Type/metabolism , Hydrazones/pharmacology , Vasodilator Agents/pharmacology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Calcium/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Papillary Muscles/drug effects , Papillary Muscles/metabolism , Potassium Chloride/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Vasodilation/drug effects
11.
Life Sci ; 94(1): 30-6, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24269214

ABSTRACT

AIMS: This work investigated the effects of 3,4-methylenedioxybenzoyl-2-thienylhydrazone (LASSBio-294) treatment on the contractile response of soleus (SOL) muscle from rats submitted to myocardial infarction (MI). MAIN METHODS: Following coronary artery ligation, LASSBio-294 (2mg/kg, i.p.) or vehicle was administrated once daily for 4 weeks. KEY FINDINGS: The run time to fatigue for sham rats was 17.9 ±2.6 min, and it was reduced to 3.3 ± 0.8 min (P<0.05) in MI rats. In MI rats treated with LASSBio-294, the time to fatigue was 15.1 ± 3.6 min. During the contractile test, SOL muscles from sham rats showed a response of 7.12 ± 0.54N/cm(2) at 60 Hz, which was decreased to 5.45 ± 0.49 N/cm(2) (P<0.05) in MI rats. The contractility of SOL muscles from the MI-LASSBio-294 group was increased to 9.01 ± 0.65N/cm(2). At 16 mM caffeine, the contractility was reduced from 2.31 ± 0.33 to 1.60 ± 0.21 N/cm(2) (P<0.05) in the MI group. In SOL muscles from MI-LASSBio-294 rats, the caffeine response was increased to 2.62 ± 0.33 N/cm(2). Moreover, SERCA2a expression in SOL muscles was decreased by 0.31-fold (31%) in the MI group compared to the Sham group (P<0.05). In the MI-LASSBio-294 group, it was increased by 1.53-fold (153%) compared to the MI group (P<0.05). Meanwhile, the nuclear density in SOL muscles was increased in the MI group compared to the Sham group. Treatment with LASSBio-294 prevented this enhancement of cellular infiltrate. SIGNIFICANCE: LASSBio-294 treatment prevented the development of muscular fatigue and improved exercise intolerance in rats submitted to MI.


Subject(s)
Calcium/metabolism , Exercise Tolerance/drug effects , Hydrazones/pharmacology , Muscle Fatigue/drug effects , Myocardial Infarction/physiopathology , Thiophenes/pharmacology , Animals , Caffeine/pharmacology , Disease Models, Animal , Exercise Tolerance/physiology , Homeostasis , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Rats , Rats, Wistar , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Time Factors
12.
Molecules ; 18(10): 11683-704, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24071978

ABSTRACT

Herein we describe NMR experiments and structural modifications of 4-methyl-2-phenylpyrimidine-N-acylhydrazone compounds (aryl-NAH) in order to discover if duplication of some signals in their ¹H- and ¹³C-NMR spectra was related to a mixture of imine double bond stereoisomers (E/Z) or CO-NH bond conformers (syn and anti-periplanar). NMR data from NOEdiff, 2D-NOESY and ¹H-NMR spectra at different temperatures, and also the synthesis of isopropylidene hydrazone revealed the nature of duplicated signals of a 4-methyl-2-phenylpyrimidine-N-acylhydrazone derivative as a mixture of two conformers in solution. Further we investigated the stereoelectronic influence of substituents at the ortho position on the pyrimidine ring with respect to the carbonyl group, as well as the electronic effects of pyrimidine by changing it to phenyl. The conformer equilibrium was attributed to the decoplanarization of the aromatic ring and carbonyl group (generated by an ortho-alkyl group) and/or the electron withdrawing character of the pyrimidine ring. Both effects increased the rotational barrier of the C-N amide bond, as verified by the DG(≠) values calculated from dynamic NMR. As far as we know, it is the first description of aryl-NAH compounds presenting two CO-NH bond- related conformations.


Subject(s)
Amides/chemistry , Hydrazones/chemical synthesis , Hydrazones/chemistry , Magnetic Resonance Spectroscopy , Methylation , Molecular Conformation , Pyrimidines/chemistry , Quantum Theory , Stereoisomerism , Thermodynamics
13.
J Pharmacol Sci ; 123(1): 47-57, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24018841

ABSTRACT

The compound LASSBio-788 (N-Allyl (2-thienylidene) 3,4-methylenedioxybenzoylhydrazine) is a thienylacylhydrazone derivative shown to have antiplatelet, vasodilatory, and anti-inflammatory properties in vitro. We hypothesize that LASSBio-788 may exert beneficial effects on atherosclerosis. Male wistar rats were divided into 4 groups: Control group received standard rat chow, hypercholesterolemic group (HC) and HC+788 (compound LASSBio-788 group) received hypercholesterolemic diet for 45 days. HC+788 group received compound LASSBio-788 (100 µmol/kg) once daily in the last 15 days. LASSBio-788 reduced the levels of total cholesterol (109.1 ± 4.3 vs. 361.0 ± 12.8 mg/dl), triglycerides (66.1 ± 1.1 vs. 186.9 ± 17.7 mg/dl), LDLc (63.2 ± 6.1 vs. 330.9 ± 9.7 mg/dl), VLDLc (9.8 ± 1.1 vs. 45.0 ± 4.6 mg/dl) and malondialdehyde (4.8 ± 0.3 vs. 9.4 ± 0.5 nmol/ml) compared to the HC group. LASSBio-788 presented antiplatelet properties and decreased inflammatory markers levels. LASSBio-788 promoted a decrease in contractile response to phenylephrine and an improvement in endothelium-dependent vasorelaxant response by increasing two-fold the expression of nitric oxide synthase (eNOS). Our results suggest that the compound LASSBio-788 represents a new multi-targeted drug candidate for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis/drug therapy , Atherosclerosis/etiology , Diet, Atherogenic/adverse effects , Hydrazones/therapeutic use , Thiophenes/therapeutic use , Animals , Atherosclerosis/blood , Cholesterol, LDL/blood , Cholesterol, VLDL/blood , Disease Models, Animal , Hydrazones/administration & dosage , Hydrazones/pharmacology , Male , Malondialdehyde/blood , Molecular Targeted Therapy , Nitric Oxide Synthase/blood , Rats , Rats, Wistar , Thiophenes/administration & dosage , Thiophenes/pharmacology , Triglycerides/blood
14.
Eur J Pharmacol ; 702(1-3): 316-22, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23399770

ABSTRACT

This work investigates the actions of LASSBio-1289, (E)-N-methyl-N'-(thiophen-3-methylene)benzo[d][1,3]dioxole-5-carbohydrazide, on monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Two weeks following the MCT injection, LASSBio-1289 (50 or 75mg/kg, p.o.) or vehicle was administrated once daily for 14 days. LASSBio-1289 (75 mg/kg) treatment caused a significant decrease in right ventricular systolic pressure (31.89±0.82 mmHg) compared to the MCT-vehicle group (52.74±6.19 mmHg; P<0.05). Oral treatment with LASSBio-1289 (50 or 75 mg/kg) effectively decreased pulmonary artery diameter and right ventricle (RV) area, assessed by echocardiography. LASSBio-1289 (75 mg/kg) reduced RV area (10.00±0.58 mm(2)) compared to the MCT-vehicle group (20.50±1.44 mm(2); P<0.05). LASSBio-1289 (75 mg/kg) also partially recovered the pulmonary artery acceleration time in MCT-treated rats. Oral treatment with LASSBio-1289 (50mg/kg) decreased the pulmonary arteriolar wall thickness (68.57±2.21%) compared to the MCT-vehicle group (81.07±1.92%; P<0.05). In experiments with isolated pulmonary arteries, the concentration of LASSBio-1289 necessary to produce 50% relaxation in the phenylephrine- or KCl-induced contraction was 27.31±6.94 and 2.72±0.99 µM, respectively, P<0.05. In the presence of LASSBio-1289 (50 µM), the maximal contraction induced by 10mM CaCl2 was reduced to 36.00±8.28% of the maximal contraction of the control curve (P<0.05). LASSBio-1289 was effective in attenuating MCT-induced PAH in rats, and its beneficial effects were likely mediated by the inhibition of extracellular Ca(2+) influx through L-type voltage-gated Ca(2+) channels in the pulmonary artery.


Subject(s)
Benzodioxoles/therapeutic use , Calcium Channel Blockers/therapeutic use , Cardiomegaly/drug therapy , Hydrazones/therapeutic use , Hypertension, Pulmonary/drug therapy , Acetylcholine/pharmacology , Animals , Benzodioxoles/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Chloride/pharmacology , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Familial Primary Pulmonary Hypertension , Hydrazones/pharmacology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , In Vitro Techniques , Male , Monocrotaline , Phenylephrine/pharmacology , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Rats , Rats, Wistar , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
15.
Eur J Med Chem ; 55: 49-57, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22857782

ABSTRACT

Several N-acylhydrazone derivatives synthesized from safrole have been found to promote intense vasodilation and antihypertensive activity. The present work describes the synthesis and antihypertensive profile of 2-thienyl-3,4-methylenedioxybenzoylhydrazone (LASSBio-1027), a new analogue of the lead compound 3,4-methylenedioxybenzoyl-2-thienylhydrazone. Thoracic aortas from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were prepared for isometric tension recording. Noninvasive blood pressure measurements were made during 14 days of intraperitoneal (10 mg/kg) or oral (20 mg/kg) administration of LASSBio-1027. LASSBio-1027 exhibited partially endothelium-dependent vasorelaxant activity, which was attenuated in the presence of l-NAME, glibenclamide, or ZM 241385. LASSBio-1027 exhibited an antihypertensive effect in SHR during 14 days of intraperitoneal or oral administration, but did not induce a hypotensive effect in normotensive WKY rats. LASSBio-1027-induced vascular relaxation of aortas from WKY rats was mediated by the activation of A(2A) adenosine receptors. Docking studies and binding assays suggested that LASSBio-1027 has affinity for A(2A) and A(3) adenosine receptors. This new N-acylhydrazone derivative represents a potential strategy for the treatment of arterial hypertension.


Subject(s)
Adenosine A2 Receptor Agonists/pharmacology , Antihypertensive Agents/pharmacology , Hydrazones/pharmacology , Receptor, Adenosine A2A/metabolism , Thiophenes/pharmacology , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/metabolism , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/metabolism , CHO Cells , Cricetinae , Cricetulus , Drug Discovery , HEK293 Cells , Humans , Hydrazones/chemistry , Hydrazones/metabolism , Male , Molecular Docking Simulation , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Protein Conformation , Rats , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A3/metabolism , Thiophenes/chemistry , Thiophenes/metabolism , Time Factors , Vasodilation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...