Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 12(23): 8662-8670, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38872957

ABSTRACT

Compliant materials are indispensable for many emerging soft robotics applications. Hence, concerns regarding sustainability and end-of-life options for these materials are growing, given that they are predominantly petroleum-based and non-recyclable. Despite efforts to explore alternative bio-derived soft materials like gelatin, they frequently fall short in delivering the mechanical performance required for soft actuating systems. To address this issue, we reinforced a compliant and transparent gelatin-glycerol matrix with structure-retained delignified wood, resulting in a flexible and entirely biobased composite (DW-flex). This DW-flex composite exhibits highly anisotropic mechanical behavior, possessing higher strength and stiffness in the fiber direction and high deformability perpendicular to it. Implementing a distinct anisotropy in otherwise isotropic soft materials unlocks new possibilities for more complex movement patterns. To demonstrate the capability and potential of DW-flex, we built and modeled a fin ray-inspired gripper finger, which deforms based on a twist-bending-coupled motion that is tailorable by adjusting the fiber direction. Moreover, we designed a demonstrator for a proof-of-concept suitable for gripping a soft object with a complex shape, i.e., a strawberry. We show that this composite is entirely biodegradable in soil, enabling more sustainable approaches for soft actuators in robotics applications.

2.
ACS Appl Mater Interfaces ; 14(35): 40257-40265, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35998318

ABSTRACT

Dielectric elastomers (DEs) are key materials in actuators, sensors, energy harvesters, and stretchable electronics. These devices find applications in important emerging fields such as personalized medicine, renewable energy, and soft robotics. However, even after years of research, it is still a great challenge to achieve DEs with increased dielectric permittivity and fast recovery of initial shape when subjected to mechanical and electrical stress. Additionally, high dielectric permittivity elastomers that show reliable performance but disintegrate under normal environmental conditions are not known. Here, we show that polysiloxanes modified with amide groups give elastomers with a dielectric permittivity of 21, which is 7 times higher than regular silicone rubber, a strain at break that can reach 150%, and a mechanical loss factor tan δ below 0.05 at low frequencies. Actuators constructed from these elastomers respond to a low electric field of 6.2 V µm-1, giving reliable lateral actuation of 4% for more than 30 000 cycles at 5 Hz. One survived 450 000 cycles at 10 Hz and 3.6 V µm-1. The best actuator shows 10% lateral strain at 7.5 V µm-1. Capacitive sensors offer a more than a 6-fold increase in sensitivity compared to standard silicone elastomers. The disintegrated material can be re-cross-linked when heated to elevated temperatures. In the future, our material could be used as dielectric in transient actuators, sensors, security devices, and disposable electronic patches for health monitoring.

3.
Sci Rep ; 6: 31287, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27506369

ABSTRACT

Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood.


Subject(s)
Lignin/chemistry , Polymerization , Wood/chemistry , Acrylamides/chemistry , Acrylic Resins/chemistry , Biocompatible Materials , Cell Wall/chemistry , Materials Testing , Microscopy, Confocal , Polymers/chemistry , Polystyrenes/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Surface Properties , Temperature
4.
Environ Pollut ; 184: 464-71, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24121422

ABSTRACT

This study represents for the first time a comprehensive assessment of functionality and environmental impacts of metallic silver nanoparticles (Ag-NP) compared to conventional organic biocides. Four different transparent, hydrophobic coatings of wooden outdoor façades were tested during one year outdoor weathering. The total silver release from products with Ag-NP was proportional to the overall erosion of the coating. The results indicate that the Ag-NPs are likely transformed to silver complexes, which are considerably less toxic than ionic silver. The protective effect of the silver containing coatings against mold, blue stain and algae was insufficient, even in immaculate and non-weathered conditions. The release of organic biocides from conventional coatings was dependent on the weather conditions, the type of biocide and the use in the base or top coat. The conventional coating showed a good overall performance free from mold, blue stain and algae until the end of the test period.


Subject(s)
Disinfectants/toxicity , Metal Nanoparticles/toxicity , Silver/analysis , Environment , Ions , Metal Nanoparticles/chemistry , Models, Chemical , Risk Assessment , Silver/chemistry , Silver/toxicity , Weather , Wood
5.
J Colloid Interface Sci ; 354(1): 168-74, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21129750

ABSTRACT

Two selected carboranethiol isomers were used to modify flat silver surfaces. Both isomers, 1,2-(HS)(2)-1,2-C(2)B(10)H(10) (a) and 9,12-(HS)(2)-1,2-C(2)B(10)H(10) (b), are relatively strong dipoles with two SH groups per molecule. They are both anchored to the surface via two SH groups per molecule. Topography and surface potential changes of the modified silver surfaces were studied using Scanning Kelvin Probe Force Microscopy (SKPFM). These measurements proved that both isomers are oppositely oriented on the surface. The former isomer increases, and the latter one decreases the surface potential of a modified silver film. The relative changes of the surface potential correlate well with the dipole moments of the isomers. Competitive chemisorption from a 1:1 mixture of both isomers shows that the isomer (a) is found in a significantly higher concentration on the surface than the isomer (b). This has been proved by both SKPFM and X-ray photoelectron spectroscopy (XPS) techniques. Additionally, contact angle measurements were carried out to characterise the modified surfaces, and these and XPS results show the presence of hydrophobic hydrocarbon contaminants.

SELECTION OF CITATIONS
SEARCH DETAIL
...