Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 92(19): 195704, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15169420

ABSTRACT

The hysteresis and kinetics of capillary condensation of N2 and Ar in linear mesopores, produced by etching of Si wafers, have been studied for different pore shapes, including the ink bottle geometry. Pore blocking has been observed in the solid state of the pore fillings, but not in the liquid state. We conclude that individual local geometries such as the pore mouth, a blind end, or a single constriction have no effect on the shape of sorption isotherms, that the pore space should be regarded as a statistical ensemble of pore segments with a lot of quenched disorder.

2.
Opt Lett ; 29(2): 195-7, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14744008

ABSTRACT

Silicon-based thin-film polarizers operating in the visible and near-infraed spectral range are fabricated by electrochemical etching of bulk silicon wafers. Anisotropically etched (110) porous silicon layers exhibit a strong in-plane anisotropy of the refractive index. Stackes of alternating layers with different mean refractive indices and thicknesses act as dichroic Bragg reflectors or microcavities, respectively. Both structures have two distinct reflection and transmission bands depending on the polarization of the incident linearly polarized light. Planar polarizers are realized through the combination, in one structure, of a dichroic reflector with either a second reflector or a microcavity with different spectral responses.

3.
Phys Rev Lett ; 89(26): 267401, 2002 Dec 23.
Article in English | MEDLINE | ID: mdl-12484855

ABSTRACT

We report on light amplification through stimulated emission in a dielectrically disordered medium. Liquid fragments confined in the solid matrix of porous quartz layers result in a random fluctuation of the dielectric function, and dye molecules embedded in the voids yield optical gain. The level of opacity is tunable by the ambient vapor pressure of the dielectric substance. In the multiple scattering regime, a strong intensity enhancement of the dye emission accompanied by significant spectral narrowing is observed above the threshold for a layer being in the opalescence state.

4.
Phys Rev Lett ; 89(13): 137401, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-12225061

ABSTRACT

We demonstrate efficient resonant energy transfer from excitons confined in silicon nanocrystals to molecular oxygen (MO). Quenching of photoluminescence (PL) of silicon nanocrystals by MO physisorbed on their surface is found to be most efficient when the energy of excitons coincides with triplet-singlet splitting energy of oxygen molecules. The dependence of PL quenching efficiency on nanocrystal surface termination is consistent with short-range resonant electron exchange mechanism of energy transfer. A highly developed surface of silicon nanocrystal assemblies and a long radiative lifetime of excitons are favorable for achieving a high efficiency of this process.

5.
Phys Rev Lett ; 87(6): 068301, 2001 Aug 06.
Article in English | MEDLINE | ID: mdl-11497868

ABSTRACT

We report new types of heterogeneous hydrogen-oxygen and silicon-oxygen branched chain reactions which have been found to proceed explosively after the filling of pores of hydrogen-terminated porous silicon (Si) by condensed or liquid oxygen in the temperature range of 4.2-90 K. Infrared vibrational absorption spectroscopy shows that, while initially Si nanocrystals assembling the layers have hydrogen-terminated surfaces, the final products of the reaction are SiO2 and H2O. Time-resolved optical experiments show that the explosive reaction develops in a time scale of 10(-6) s. We emphasize the remarkable structural properties of porous Si layers which are crucial for the strong explosive interaction.

6.
Opt Lett ; 26(16): 1265-7, 2001 Aug 15.
Article in English | MEDLINE | ID: mdl-18049581

ABSTRACT

We performed a study of the in-plane birefringence of anisotropically nanostructured Si layers, which exhibit a greater difference in the main value of the anisotropic refractive index than that of natural birefringent crystals. The anisotropy parameters were found to be strongly dependent on the typical size of the Si nanowires used to assemble the layers. This finding opens the possibility of an application of birefringent Si retarders to a wide spectral range for control of the polarization state of light.

SELECTION OF CITATIONS
SEARCH DETAIL
...