Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 24(34): 7464-76, 2004 Aug 25.
Article in English | MEDLINE | ID: mdl-15329393

ABSTRACT

L-type Ca2+ channels (LTCCs) play an important role in chronic psychostimulant-induced behaviors. However, the Ca2+ second messenger pathways activated by LTCCs after acute and recurrent psychostimulant administration that contribute to drug-induced molecular adaptations are poorly understood. Using a chronic amphetamine treatment paradigm in rats, we have examined the role of LTCCs in activating the mitogen-activated protein (MAP) kinase pathway in the ventral tegmental area (VTA), a primary target for the reinforcing properties of psychostimulants. Using immunoblot and immunohistochemical analyses, we find that in chronic saline-treated rats a challenge injection of amphetamine increases phosphorylation of MAP [extracellular signal-regulated kinase 1/2 (ERK1/2)] kinase in the VTA that is independent of LTCCs. However, in chronic amphetamine-treated rats there is no increase in amphetamine-mediated ERK1/2 phosphorylation unless LTCCs are blocked, in which case there is robust phosphorylation in VTA dopamine neurons. Examination of the expression of phosphatases reveals an increase in calcineurin [protein phosphatase 2B (PP2B)] and MAP kinase phosphatase-1 (MKP-1) in the VTA. Using in situ hybridization histochemistry and immunoblot analyses, we further examined the mRNA and protein expression of the LTCC subtypes Ca(v)1.2 and Ca(v)1.3 in VTA dopamine neurons in drug-naive animals and in rats after chronic amphetamine treatment. We found an increase in Ca(v)1.2 mRNA and protein levels, with no change in Ca(v)1.3. Together, our results suggest that one aspect of LTCC-induced changes in second messenger pathways after chronic amphetamine exposure involves activation of the MAP kinase phosphatase pathway by upregulation of Ca(v)1.2 in VTA dopaminergic neurons.


Subject(s)
Amphetamine/pharmacology , Calcium Channels, L-Type/physiology , Central Nervous System Stimulants/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Ventral Tegmental Area/drug effects , Amphetamine/administration & dosage , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/biosynthesis , Calcium Channels, L-Type/genetics , Central Nervous System Stimulants/administration & dosage , Dose-Response Relationship, Drug , Immunoblotting , Immunohistochemistry , In Situ Hybridization , Male , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Phosphoprotein Phosphatases/biosynthesis , Phosphorylation , Protein Phosphatase 1 , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Time Factors , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...