Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4029, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740745

ABSTRACT

Protein folds and the local environments they create can be compared using a variety of differently designed measures, such as the root mean squared deviation, the global distance test, the template modeling score or the local distance difference test. Although these measures have proven to be useful for a variety of tasks, each fails to fully incorporate the valuable chemical information inherent to atoms and residues, and considers these only partially and indirectly. Here, we develop the highly flexible local composition Hellinger distance (LoCoHD) metric, which is based on the chemical composition of local residue environments. Using LoCoHD, we analyze the chemical heterogeneity of amino acid environments and identify valines having the most conserved-, and arginines having the most variable chemical environments. We use LoCoHD to investigate structural ensembles, to evaluate critical assessment of structure prediction (CASP) competitors, to compare the results with the local distance difference test (lDDT) scoring system, and to evaluate a molecular dynamics simulation. We show that LoCoHD measurements provide unique information about protein structures that is distinct from, for example, those derived using the alignment-based RMSD metric, or the similarly distance matrix-based but alignment-free lDDT metric.


Subject(s)
Molecular Dynamics Simulation , Proteins , Proteins/chemistry , Amino Acids/chemistry , Protein Conformation , Protein Folding , Algorithms , Computational Biology/methods
2.
Nat Commun ; 14(1): 4621, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528104

ABSTRACT

A large group of hormones are stored as amyloid fibrils in acidic secretion vesicles before they are released into the bloodstream and readopt their functional state. Here, we identify an evolutionarily conserved hexapeptide sequence as the major aggregation-prone region (APR) of gastrointestinal peptides of the glucagon family: xFxxWL. We determine nine polymorphic crystal structures of the APR segments of glucagon-like peptides 1 and 2, and exendin and its derivatives. We follow amyloid formation by CD, FTIR, ThT assays, and AFM. We propose that the pH-dependent changes of the protonation states of glutamate/aspartate residues of APRs initiate switching between the amyloid and the folded, monomeric forms of the hormones. We find that pH sensitivity diminishes in the absence of acidic gatekeepers and amyloid formation progresses over a broad pH range. Our results highlight the dual role of short aggregation core motifs in reversible amyloid formation and receptor binding.


Subject(s)
Amyloid , Nanostructures , Amyloid/metabolism , Peptides/chemistry , Amyloidogenic Proteins , Hormones , Homeostasis , Nanostructures/chemistry , Glucose
3.
Hum Mutat ; 39(12): 1854-1860, 2018 12.
Article in English | MEDLINE | ID: mdl-30260545

ABSTRACT

NPHS2, encoding podocin, is the major gene implicated in steroid-resistant nephrotic syndrome. Its c.686G>A, p.R229Q variant is the first human variant with a mutation-dependent pathogenicity; it is only pathogenic when trans-associated to specific mutations. Secondary to its high allele frequency in the European, South Asian, African, and Latino populations, its benign trans-associations can be accidentally identified in affected patients. Distinguishing pathogenic and benign p.R229Q associations can be challenging. In this paper, we present the currently known pathogenic and benign associations, and show that a rare p.R229Q association can be considered pathogenic if the variant in trans meets the following criteria; it affects the 270-351 residues and alters but does not disrupt the oligomerization, its p.R229Q association is found in a family with slowly progressing focal segmental glomerulosclerosis, but is expected to be rare in the general population (<1:106 ). We show that >15% of the p.R229Q associations identified so far in patients are benign.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nephrotic Syndrome/genetics , Polymorphism, Single Nucleotide , Amino Acid Motifs , Gene Frequency , Genetic Predisposition to Disease , Glomerulosclerosis, Focal Segmental/genetics , Humans , Protein Conformation , Protein Multimerization , Risk Assessment
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(7): 2448-2457, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29660491

ABSTRACT

Interallelic interactions of membrane proteins are not taken into account while evaluating the pathogenicity of sequence variants in autosomal recessive disorders. Podocin, a membrane-anchored component of the slit diaphragm, is encoded by NPHS2, the major gene mutated in hereditary podocytopathies. We formerly showed that its R229Q variant is only pathogenic when trans-associated to specific 3' mutations and suggested the causal role of an abnormal C-terminal dimerization. Here we show by FRET analysis and size exclusion chromatography that podocin oligomerization occurs exclusively through the C-terminal tail (residues 283-382): principally through the first C-terminal helical region (H1, 283-313), which forms a coiled coil as shown by circular dichroism spectroscopy, and through the 332-348 region. We show the principal role of the oligomerization sites in mediating interallelic interactions: while the monomer-forming R286Tfs*17 podocin remains membranous irrespective of the coexpressed podocin variant identity, podocin variants with an intact H1 significantly influence each other's localization (r2 = 0.68, P = 9.2 × 10-32). The dominant negative effect resulting in intracellular retention of the pathogenic F344Lfs*4-R229Q heterooligomer occurs in parallel with a reduction in the FRET efficiency, suggesting the causal role of a conformational rearrangement. On the other hand, oligomerization can also promote the membrane localization: it can prevent the endocytosis of F344Lfs*4 or F344* podocin mutants induced by C-terminal truncation. In conclusion, C-terminal oligomerization of podocin can mediate both a dominant negative effect and interallelic complementation. Interallelic interactions of NPHS2 are not restricted to the R229Q variant and have to be considered in compound heterozygous individuals.


Subject(s)
Intracellular Signaling Peptides and Proteins , Kidney Diseases , Membrane Proteins , Mutation, Missense , Podocytes/metabolism , Protein Multimerization/genetics , Amino Acid Substitution , Cell Line, Transformed , Fluorescence Resonance Energy Transfer , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Podocytes/pathology , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...