Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 40(21): 11320-11338, 2022.
Article in English | MEDLINE | ID: mdl-34463213

ABSTRACT

A large analysis of the signal transducer and activator of transcription (STAT3) in cancer is currently being carried out. It regulates gene expression, which is required for normal cellular functions such as differentiation, cell growth, proliferation, survival, maturation, and immunity. A ligand-based pharmacophore model was created using 3 D QSAR pharmacophore generation methodology in Discovery studio 4.1 clients to imagine structurally diverse novel chemical entities as STAT3 inhibitors with improved efficacy. Chemical properties of 48 different derivatives were included in the training package. Hypo1 was chosen as the query model for screening 1,45,000 drug-like molecules from the SPECS database, with these molecules subjected to the Lipinski rule of 5, Verber's rule, and SMART filtration. After filtration, the molecule was examined further using molecular docking analysis on the active site of STAT3. The binding interaction(s) and pharmacophore mapping were used to select the 19 possible inhibitory molecules. These 19 hits were then tested for toxicity using the TOPKAT software. In MD simulations and MM-PBSA calculations, the tested compound specs 28 provided the best results, suggesting that this ligand has the ability to inhibit more effectively. Based in-silico finding 19 compounds are subjected to in vitro anticancer activity against MDA-MB-231 and MCF-7 cell lines. Based on results compounds specs 11 and specs 13 shows significant activity compared to other compounds and these compounds were subjected to apoptosis assay. The tested compounds induced morphologic changes were dose and time dependent by which all the tested compound exhibits stronger anti-tumor effects.Communicated by Ramaswamy H. Sarma.


Subject(s)
Pharmacophore , Quantitative Structure-Activity Relationship , STAT3 Transcription Factor , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Software , STAT3 Transcription Factor/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...