Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39031069

ABSTRACT

High-efficiency Pb-Sn narrow-bandgap perovskite solar cells (PSCs) heavily rely on PEDOT:PSS as the hole-transport layer (HTL) owing to its excellent electrical conductivity, dopant-free nature, and facile solution processability. However, the shallow work function (WF) of PEDOT:PSS consequently results in severe minority carrier recombination at the perovskite/HTL interface. Here, we tackle this issue by an in situ interface engineering strategy using a new molecule called 2-fluoro benzylammonium iodide (FBI) that suppresses nonradiative recombination near the Pb-Sn perovskite (FA0.6MA0.4Pb0.4Sn0.6I3)/HTL bottom interface. The WF of PEDOT:PSS increases by 0.1 eV with FBI modification, resulting in Pb-Sn PSCs with 20.5% efficiency and an impressive VOC of 0.843 V. Finally, we have successfully transferred our in situ buried interface modification strategy to fabricate blade-coated FA0.6MA0.4Pb0.4Sn0.6I3 PSCs with 18.3% efficiency and an exceptionally high VOC of 0.845 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...