Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pak J Pharm Sci ; 29(3 Suppl): 1053-7, 2016 May.
Article in English | MEDLINE | ID: mdl-27383483

ABSTRACT

This study aimed to evaluate the role of zinc (Zn)-supplemented with high cholesterol diet (HCD) on the serum and whole blood rheological properties of rabbits fed a HCD. Twenty-four New Zealand white rabbits were divided into three groups. The HCD group was fed a diet with 1.0% cholesterol and 1.0% olive oil. The HCD + Zn group was fed a diet with 1.0% cholesterol, 1.0% olive oil, and Zn. Blood viscosity, shear stress, and torque (%) were measured at shear rates ranging from 225 to 1875 s-1 for serum and 75-900 s-1 for whole blood. Serum viscosity and shear stress in HCD rabbits were significantly higher at all shear rates compared to controls; while whole blood viscosity and shear stress in HCD rabbits were significantly lower at all shear rates compared to controls. Viscosity and shear stress in both serum and whole blood from rabbits in the HCD + Zn group returned to normal values at all shear rates. The Zn supplemented to HCD rabbits, delays the progression of atherosclerosis. Changes in blood serum viscosity could reflect changes in non-clotting proteins, glucose, nutrients and trace elements; while changes in whole blood viscosity could result from changes in hematocrit, hemoglobin, and erythrocyte count. One of the factors responsible for increasing the serum viscosity values of HCD rabbits might be attributed to increase in Fe and decrease in Zn levels in the blood serum.


Subject(s)
Atherosclerosis/physiopathology , Hemorheology , Animals , Atherosclerosis/blood , Atherosclerosis/prevention & control , Blood Viscosity , Cholesterol, Dietary , Diet, High-Fat , Dietary Supplements , Disease Models, Animal , Disease Progression , Male , Rabbits , Stress, Mechanical , Time Factors , Zinc/pharmacology
2.
Pak J Pharm Sci ; 29(5 Suppl): 1739-1743, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28476695

ABSTRACT

The spectroscopic properties can indicate important features about the nature and severity of the disease. However, no earlier studies have been used the spectroscopic properties as a diagnostic tool for radiation detection. This study was aimed to use ultraviolet-visible and fluorescence spectroscopy as a diagnostic tool for gamma irradiation detection in rats in vivo. Adult male rats were exposed to 25, 50, 75 and 100 Gray as single dose, using Cobalt-60 (Co-60) source with a dose rate of 0.883 centi Gray/sec (cGy/s). Ultraviolet and fluorescence spectroscopy of rat's blood serum were measured. After gamma irradiation of rats in vivo, the blood serum absorbance peaks for 25, 50, 75 and 100 Gray (Gy) decreased and shifted towards the ultra violet wavelength. A maximal change in fluorescence intensity of blood serum at 350 nm was obtained when exciting light at 194 nm after irradiation. The fluorescence intensity also decreased with the dose. The highest radiation gamma dose might be accompanied with the highest oxidative stress. This study suggests that at the above mentioned gamma radiation doses, the blood is highly fragmented; with low aggregation at 25 Gy and with high aggregation at 50-100 Gy.


Subject(s)
Gamma Rays , Spectrometry, Fluorescence/methods , Spectrophotometry, Ultraviolet/methods , Animals , Male , Radiation Dosage , Rats , Rats, Inbred WKY , Serum
SELECTION OF CITATIONS
SEARCH DETAIL
...