Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm Res ; 17: 3475-3498, 2024.
Article in English | MEDLINE | ID: mdl-38828049

ABSTRACT

Background: Acute gouty arthritis (AGA) is characterized by the accumulation of monosodium urate crystals within the joints, leading to inflammation and severe pain. Western medicine treatments have limitations in addressing this condition. Previous studies have shown the efficacy of Qinpi Tongfeng formula (QPTFF) in treating AGA, but further investigation is needed to understand its mechanism of action. Methods: We used ultra-high-performance liquid chromatography tandem Q-Exactive Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-MS) to identify compounds in QPTFF. Target proteins regulated by these compounds were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Chemistry Database, and Swiss Target Prediction Database. AGA-related targets were searched and screened from various databases, including Genecards, PharmGKB, Drugbank, etc. Intersection targets of QPTFF and AGA were analyzed for protein-protein interaction networks, GO function enrichment, and KEGG pathway enrichment. We then verified QPTFF's mechanism of action using an AGA rat model, assessing pathological changes via H&E staining and target expression via ELISA, RT-qPCR, and Western blot. Results: UHPLC-Q-Orbitrap-MS identified 207 compounds in QPTFF, with 55 selected through network pharmacology. Of 589 compound-regulated targets and 1204 AGA-related targets, 183 potential targets were implicated in QPTFF's treatment of AGA. Main target proteins included IL-1ß, NFKBIA, IL-6, TNF, CXCL8, and MMP9, with the IL-17 signaling pathway primarily regulated by QPTFF. Experimental results showed that medium and high doses of QPTFF significantly reduced serum inflammatory factors and MMP-9 expression, and inhibited IL-17A, IL-6, IKK-ß, and NF-κB p65 mRNA and protein expression in AGA rats compared to the model group. Conclusion: Key targets of QPTFF include IL-1ß, NFKBIA, IL-6, TNF-α, CXCL8, and MMP9. QPTFF effectively alleviates joint inflammation in AGA rats, with high doses demonstrating no liver or kidney toxicity. Its anti-inflammatory mechanism in treating AGA involves the IL-17A/NF-κB p65 signaling pathway.

2.
J Ethnopharmacol ; 330: 118182, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38621464

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acute gouty arthritis (AGA) is characterized by a rapid inflammatory reaction caused by the build-up of monosodium urate (MSU) crystals in the tissues surrounding the joints. This condition often associated with hyperuricemia (HUA), is distinguished by its symptoms of intense pain, active inflammation, and swelling of the joints. Traditional approaches in AGA management often fall short of desired outcomes in clinical settings. However, recent ethnopharmacological investigations have been focusing on the potential of Traditional Herbal Medicine (THM) in various forms, exploring their therapeutic impact and targets in AGA treatment. AIM OF THE REVIEW: This review briefly summarizes the current potential pharmacological mechanisms of THMs - including active ingredients, extracts, and prescriptions -in the treatment of AGA, and discusses the relevant potential mechanisms and molecular targets in depth. The objective of this study is to offer extensive information and a reference point for the exploration of targeted AGA treatment using THMs. MATERIALS AND METHODS: This review obtained scientific publications focused on in vitro and in vivo studies of anti-AGA THMs conducted between 2013 and 2023. The literature was collected from various journals and electronic databases, including PubMed, Elsevier, ScienceDirect, Web of Science, and Google Scholar. The retrieval and analysis of relevant articles were guided by keywords such as "acute gouty arthritis and Chinese herbal medicine," "acute gouty arthritis herbal prescription," "acute gouty arthritis and immune cells," "acute gouty arthritis and inflammation," "acute gouty arthritis and NOD-like receptor thermoprotein domain associated protein 3 (NLRP3)," "acute gouty arthritis and miRNA," and "acute gouty arthritis and oxidative stress." RESULTS: We found that AGA has a large number of therapeutic targets, highlighting the effectiveness the potential of THMs in AGA treatment through in vitro and in vivo studies. THMs and their active ingredients can mitigate AGA symptoms through a variety of therapeutic targets, such as influencing macrophage polarization, neutrophils, T cells, natural killer (NK) cells, and addressing factors like inflammation, NLRP3 inflammasome, signaling pathways, oxidative stress, and miRNA multi-target interactions. The anti-AGA properties of THMs, including their active components and prescriptions, were systematically summarized and categorized based on their respective therapeutic targets. CONCLUSION: phenolic, flavonoid, terpenoid and alkaloid compounds in THMs are considered the key ingredients to improve AGA. THMs and their active ingredients achieve enhanced efficacy through interactions with multiple targets, of which NLRP3 is a main therapeutic target. Nonetheless, given the intricate composition of traditional Chinese medicine (TCM), additional research is required to unravel the underlying mechanisms and molecular targets through which THMs alleviate AGA.


Subject(s)
Arthritis, Gouty , Arthritis, Gouty/drug therapy , Humans , Animals , Medicine, Traditional/methods , Phytotherapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Acute Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...