Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 10(10)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557863

ABSTRACT

The olive fruit fly, Bactrocera oleae, is considered the main olive pest worldwide, and has been the target of biological control programmes through the release of the braconid parasitoid Psyttalia concolor. Laboratory tests were performed to evaluate the influence of distance from the host on parasitisation, placing larvae of the substitute host Ceratitis capitata at seven distances (0, 0.5, 1, 1.5, 2, 2.5, 3 mm) and four different time periods (7, 15, 30, 60 min). Moreover, field collected olives of Ogliarola Barese cultivar infested by B. oleae were exposed to P. concolor females to confirm its ability to parasitise B. oleae in small olives. Psyttalia concolor oviposition was inhibited at 2.5 and 3 mm due to the ovipositor length of the parasitoid females (2.7 mm). Hosts were easily parasitised at distances between 0 and 1.5 mm. The thin fruit pulp (up to 3.5 mm) of field collected olives allowed the parasitisation to occur also in mature fruits. At the best combination distance/time (0 mm, 30 min), tests performed with different larvae/parasitoid female ratio showed an increasing emergence of P. concolor (from 20% to 57%) with larvae/parasitoid ratio increasing from 0.11 to 0.74. The results of the present study might optimise the mass rearing of P. concolor, through a proper setting of its parameters, such as the host/parasitoid ratio, exposure distances, and interaction time.

2.
Insects ; 10(7)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311092

ABSTRACT

A major challenge to the area-wide management of Drosophila suzukii is understanding the fly's host use and temporal dynamics, which may dictate local movement patterns. We determined D. suzukii's seasonal host use in California's San Joaquin Valley by sampling common crop and non-crop fruits in a temporal sequence of fruit ripening. We then evaluated the suitability of selected fruits as hosts. Drosophila suzukii emerged from both intact and damaged cherries during the cooler, early season period. Fly density remained low through the hot spring-summer period and re-surged as temperatures lowered in fall when the fly did not cause damage to intact peach, nectarine, plum, pear, grape, pomegranate, apple, persimmon and citrus (in order of ripening) but did emerge from the damaged fruits of these crops. The fly also emerged from two ornamental fruits (loquats and cactus) but was not found on wild plum and two endemic wild fruits (buckthorn and bitter berry). Drosophila suzukii completed development (egg to adult) on cactus, mandarin carpel, pomegranate seed, wild plum and buckthorn at survival rates similar to cherry (51.2-68.8%), whereas it had a lower survival rate on bitter cherry (33.2%), table grape (31.5%), raisin grape (26.5%), and wine grape (4.5%). The high acidity levels of grapes negatively affected the fly's fitness. Among 10 cherry cultivars, survival rate was not affected by sugar content, but it decreased with increasing egg density per gram of fruit. Results suggest that in California's San Joaquin Valley, the early season crops are most vulnerable, summer fruits ripen during a period of low pest pressure, and late season fruits, when damaged, serve to sustain D. suzukii's populations in this region.

3.
PLoS One ; 12(8): e0183525, 2017.
Article in English | MEDLINE | ID: mdl-28829796

ABSTRACT

Functional response describes the number of prey or hosts attacked by a predator or parasitoid as a function of prey or host density. Using three different experimental designs, we found a linear functional response by two insect parasitoids (the pteromalid Pachycrepoideus vindemiae and the diapriid Trichopria drosophilae) to their hosts (the drosophilids Drosophila suzukii and D. melanogaster). A linear function response is considered unusual for insect parasitoids. The first design was a 'fixed time within patch experiment' where individual parasitoids were exposed to a range of host densities for 24 h; the second two designs were a 'variable time functional response' and a 'selective functional response' experiments where individual parasitoids were presented with a range of host patches and allowed to freely select and explore only one patch (variable time) or forage for 24 h (selective). In all experimental designs, the number of hosts parasitized increased linearly until reaching an upper limit. Under the laboratory conditions used, the functional response of P. vindemiae was limited by its egg supply and time (host handling time) whereas T. drosophilae was limited by time only. The linear functional response by both parasitoids likely resulted from a constant attack rate and an incremental foraging strategy where the parasitoids left a poor (low density) host patch or remained in a higher quality host patch when there was successful oviposition and adequate host density.


Subject(s)
Drosophila/parasitology , Feeding Behavior , Pupa/parasitology , Wasps/physiology , Animals , Drosophila/growth & development , Female , Oviposition
4.
Environ Entomol ; 45(4): 763-71, 2016 08.
Article in English | MEDLINE | ID: mdl-26654917

ABSTRACT

The overwintering survival and development of Drosophila suzukii Matsumura were investigated in California's San Joaquin Valley. Drosophila suzukii were exposed to overwintering conditions in cages hung in a citrus orchard, and the pupae were buried in the soil. Eggs exposed from late November to January did not survive; a low percentage (<3%) of larvae and pupae developed into adults. Survival of pupae was significantly higher when buried in the soil than on the citrus tree. From late January to March, all life stages developed into adults and overwintered adult female D. suzukii produced eggs when provided with 10% honey-water and sliced oranges. Adult survival varied among fruit juice provision treatments and overwintering exposure periods, ranging from 3.4 ± 0.9 d (water) to 44.1 ± 3.0 d (10% honey-water). Fruit juices of apple, cherry, grape, orange, and pomegranate were tested as adult food sources; results showed that adult female and male D. suzukii lived only 2 d with water only, whereas adults survived from 14.2 to 34.8 d with fruit juice treatments and the 10% honey-water control. An unexpected event was the oviposition and immature development of D. suzukii with the fruit juice. In a follow-up laboratory trial, when 10% honey-water or orange juice were provided along with an artificial diet for oviposition and immature development, female D. suzukii survived for 21.6 ± 2.4 or 21.6 ± 1.5 d, and produced 106.8 ± 14.1 or 98.5 ± 13.1 offspring, respectively. We discuss factors potentially influencing overwintering survival of D. suzukii.


Subject(s)
Drosophila/physiology , Longevity , Animals , California , Diet , Drosophila/growth & development , Feeding Behavior , Female , Larva/growth & development , Larva/physiology , Male , Ovum/physiology , Pupa/growth & development , Pupa/physiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...