Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Chem Biol ; 5(1): 12-18, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179194

ABSTRACT

As our understanding of biological systems grows, so does the need to selectively target individual or multiple members of specific protein families in order to probe their function. Many targets of current biological and pharmaceutical interest are part of a large family of closely related proteins and achieving ligand selectivity often remains either an elusive or time-consuming endeavour. Cyclic peptides (CPs) occupy a key niche in ligand space, able to achieve high affinity and selectivity while retaining synthetic accessibility. De novo cyclic peptide ligands can be rapidly generated against a given target using mRNA display. In this study we harness mRNA display technology and the wealth of next generation sequencing (NGS) data generated to explore both experimental approaches and bioinformatic, statistical data analysis of peptide enrichment in cross-screen selections to rapidly generate high affinity CPs with differing intra-family protein selectivity profiles against fibroblast growth factor receptor (FGF-R) family proteins. Using these methods, CPs with distinct selectivity profiles can be generated which can serve as valuable tool compounds to decipher biological questions.

2.
Chem Sci ; 13(11): 3256-3262, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414877

ABSTRACT

In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure-activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development.

3.
Nat Biotechnol ; 36(6): 540-546, 2018 07.
Article in English | MEDLINE | ID: mdl-29786095

ABSTRACT

Construction and characterization of large genetic variant libraries is essential for understanding genome function, but remains challenging. Here, we introduce a Cas9-based approach for generating pools of mutants with defined genetic alterations (deletions, substitutions, and insertions) with an efficiency of 80-100% in yeast, along with methods for tracking their fitness en masse. We demonstrate the utility of our approach by characterizing the DNA helicase SGS1 with small tiling deletion mutants that span the length of the protein and a series of point mutations against highly conserved residues in the protein. In addition, we created a genome-wide library targeting 315 poorly characterized small open reading frames (smORFs, <100 amino acids in length) scattered throughout the yeast genome, and assessed which are vital for growth under various environmental conditions. Our strategy allows fundamental biological questions to be investigated in a high-throughput manner with precision.


Subject(s)
DNA, Fungal/genetics , Gene Library , Saccharomyces cerevisiae/genetics , Base Sequence , Biotechnology , CRISPR-Cas Systems , Conserved Sequence , Genetic Variation , High-Throughput Nucleotide Sequencing , Open Reading Frames , Point Mutation , RecQ Helicases/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Sequence Deletion
4.
Nat Microbiol ; 3(1): 73-82, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29062088

ABSTRACT

Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based 'gene drive array' platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens.


Subject(s)
CRISPR-Cas Systems , Candida albicans/genetics , Gene Drive Technology , Genetic Techniques , Biofilms/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Fluconazole/pharmacology , Fungal Proteins/genetics , Gene Deletion , Gene Expression Regulation, Fungal/drug effects , High-Throughput Screening Assays , Homozygote , Virulence/genetics
5.
BMC Syst Biol ; 11(1): 37, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28298216

ABSTRACT

BACKGROUND: Protein secretion is one of the most important processes in eukaryotes. It is based on a highly complex machinery involving numerous proteins in several cellular compartments. The elucidation of the cell biology of the secretory machinery is of great importance, as it drives protein expression for biopharmaceutical industry, a 140 billion USD global market. However, the complexity of secretory process is difficult to describe using a simple reductionist approach, and therefore a promising avenue is to employ the tools of systems biology. RESULTS: On the basis of manual curation of the literature on the yeast, human, and mouse secretory pathway, we have compiled a comprehensive catalogue of characterized proteins with functional annotation and their interconnectivity. Thus we have established the most elaborate reconstruction (RECON) of the functional secretion pathway network to date, counting 801 different components in mouse. By employing our mouse RECON to the CHO-K1 genome in a comparative genomic approach, we could reconstruct the protein secretory pathway of CHO cells counting 764 CHO components. This RECON furthermore facilitated the development of three alternative methods to study protein secretion through graphical visualizations of omics data. We have demonstrated the use of these methods to identify potential new and known targets for engineering improved growth and IgG production, as well as the general observation that CHO cells seem to have less strict transcriptional regulation of protein secretion than healthy mouse cells. CONCLUSIONS: The RECON of the secretory pathway represents a strong tool for interpretation of data related to protein secretion as illustrated with transcriptomic data of Chinese Hamster Ovary (CHO) cells, the main platform for mammalian protein production.


Subject(s)
Computational Biology/methods , Gene Expression Profiling , Secretory Pathway/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Gene Ontology , Mice
6.
Biotechnol J ; 10(7): 1081-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25963793

ABSTRACT

Coagulation factor VIII (FVIII) is one of the most complex biopharmaceuticals due to the large size, poor protein stability and extensive post-translational modifications. As a consequence, efficient production of FVIII in mammalian cells poses a major challenge, with typical yields two to three orders of magnitude lower than for antibodies. In the present study we investigated CHO DXB11 cells transfected with a plasmid encoding human coagulation factor VIII. Single cell clones were isolated from the pool of transfectants and a panel of 14 clones representing a dynamic range of FVIII productivities was selected for RNA sequencing analysis. The analysis showed distinct differences in F8 RNA composition between the clones. The exogenous F8-dhfr transcript was found to make up the most abundant transcript in the present clones. No correlation was seen between F8 mRNA levels and the measured FVIII productivity. It was found that three MTX resistant, nonproducing clones had different truncations of the F8 transcripts. We find that by using deep sequencing, in contrast to microarray technology, for determining the transcriptome from CHO transfectants, we are able to accurately deduce the mature mRNA composition of the transgene and identify significant truncations that would probably otherwise have remained undetected.


Subject(s)
CHO Cells , Factor VIII/genetics , High-Throughput Nucleotide Sequencing , Recombinant Proteins/genetics , Animals , Cricetinae , Cricetulus , Factor VIII/biosynthesis , Humans , Protein Processing, Post-Translational , RNA, Messenger/genetics , Recombinant Proteins/biosynthesis , Transcriptome/genetics
7.
BMC Genomics ; 16: 160, 2015 Mar 08.
Article in English | MEDLINE | ID: mdl-25887056

ABSTRACT

BACKGROUND: The DHFR negative CHO DXB11 cell line (also known as DUX-B11 and DUKX) was historically the first CHO cell line to be used for large scale production of heterologous proteins and is still used for production of a number of complex proteins. RESULTS: Here we present the genomic sequence of the CHO DXB11 genome sequenced to a depth of 33x. Overall a significant genomic drift was seen favoring GC → AT point mutations in line with the chemical mutagenesis strategy used for generation of the cell line. The sequencing depth for each gene in the genome revealed distinct peaks at sequencing depths of 0x, 16x, 33x and 49x coverage corresponding to a copy number in the genome of 0, 1, 2 and 3 copies. This indicate that 17% of the genes are haploid revealing a large number of genes which can be knocked out with relative ease. This tendency of haploidy was furthermore shown to be present in eight additional analyzed CHO genomes (15-20% haploidy) but not in the genome of the Chinese hamster. The dhfr gene is confirmed to be haploid in CHO DXB11; transcriptionally active and the remaining allele contains a G410C point mutation causing a Thr137Arg missense mutation. We find ~2.5 million single nucleotide polymorphisms (SNP's), 44 gene deletions in the CHO DXB11 genome and 9357 SNP's, which interfere with the coding regions of 3458 genes. Copy number variations for nine CHO genomes were mapped to the chromosomes of the Chinese hamster showing unique signatures for each chromosome. The data indicate that chromosome one and four appear to be more stable over the course of the CHO evolution compared to the other chromosomes thus might presenting the most attractive landing platforms for knock-ins of heterologous genes. CONCLUSIONS: Our studies reveal an unexpected degree of haploidy in CHO DXB11 and CHO cells in general and highlight the chromosomal changes that have occurred among the CHO cell lines sequenced to date.


Subject(s)
CHO Cells , Genome , Genomic Instability , Haploidy , Animals , Chromosomes, Mammalian , Cricetinae , Cricetulus , DNA Copy Number Variations , Genetic Variation , Polymorphism, Single Nucleotide , Polyploidy , Sequence Analysis, DNA
8.
Biochem J ; 441(1): 219-26, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21916847

ABSTRACT

MPA (mycophenolic acid) is an immunosuppressive drug produced by several fungi in Penicillium subgenus Penicillium. This toxic metabolite is an inhibitor of IMPDH (IMP dehydrogenase). The MPA-biosynthetic cluster of Penicillium brevicompactum contains a gene encoding a B-type IMPDH, IMPDH-B, which confers MPA resistance. Surprisingly, all members of the subgenus Penicillium contain genes encoding IMPDHs of both the A and B types, regardless of their ability to produce MPA. Duplication of the IMPDH gene occurred before and independently of the acquisition of the MPAbiosynthetic cluster. Both P. brevicompactum IMPDHs are MPA-resistant, whereas the IMPDHs from a non-producer are MPA-sensitive. Resistance comes with a catalytic cost: whereas P. brevicompactum IMPDH-B is >1000-fold more resistant to MPA than a typical eukaryotic IMPDH, its kcat/Km value is 0.5% of 'normal'. Curiously, IMPDH-B of Penicillium chrysogenum, which does not produce MPA, is also a very poor enzyme. The MPA-binding site is completely conserved among sensitive and resistant IMPDHs. Mutational analysis shows that the C-terminal segment is a major structural determinant of resistance. These observations suggest that the duplication of the IMPDH gene in the subgenus Penicillium was permissive for MPA production and that MPA production created a selective pressure on IMPDH evolution. Perhaps MPA production rescued IMPDH-B from deleterious genetic drift.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , IMP Dehydrogenase/antagonists & inhibitors , Mycophenolic Acid/metabolism , Penicillium/metabolism , Amino Acid Sequence , Binding Sites , Gene Duplication , Gene Expression Regulation, Fungal/physiology , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Models, Molecular , Multigene Family , Mycophenolic Acid/pharmacology , Protein Conformation
9.
BMC Microbiol ; 11: 202, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21923907

ABSTRACT

BACKGROUND: Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several Penicillium species. The target of MPA is inosine-5'-monophosphate dehydrogenase (IMPDH), which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from Penicillium brevicompactum revealed an extra copy of the IMPDH-encoding gene (mpaF) embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by mpaF. RESULTS: In accordance with our hypothesis, heterologous expression of mpaF dramatically increased MPA resistance in a model fungus, Aspergillus nidulans, which does not produce MPA. The growth of an A. nidulans strain expressing mpaF was only marginally affected by MPA at concentrations as high as 200 µg/ml. To further substantiate the role of mpaF in MPA resistance, we searched for mpaF orthologs in six MPA producer/non-producer strains from Penicillium subgenus Penicillium. All six strains were found to hold two copies of IMPDH. A cladistic analysis based on the corresponding cDNA sequences revealed a novel group constituting mpaF homologs. Interestingly, a conserved tyrosine residue in the original class of IMPDHs is replaced by a phenylalanine residue in the new IMPDH class. CONCLUSIONS: We identified a novel variant of the IMPDH-encoding gene in six different strains from Penicillium subgenus Penicillium. The novel IMPDH variant from MPA producer P. brevicompactum was shown to confer a high degree of MPA resistance when expressed in a non-producer fungus. Our study provides a basis for understanding the molecular mechanism of MPA resistance and has relevance for biotechnological and pharmaceutical applications.


Subject(s)
Aspergillus nidulans/drug effects , Fungal Proteins/metabolism , IMP Dehydrogenase/metabolism , Mycophenolic Acid/biosynthesis , Penicillium/enzymology , Amino Acid Sequence , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Dosage , Gene Expression , IMP Dehydrogenase/chemistry , IMP Dehydrogenase/genetics , Molecular Sequence Data , Mycophenolic Acid/pharmacology , Penicillium/chemistry , Penicillium/genetics , Penicillium/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...