Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 10(4): 1327-1340, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32054635

ABSTRACT

Voltage-gated sodium (Nav) channels play a central role in the generation and propagation of action potentials in excitable cells such as neurons and muscles. To determine how the phenotypes of Nav-channel mutants are affected by other genes, we performed a forward genetic screen for dominant modifiers of the seizure-prone, gain-of-function Drosophila melanogaster Nav-channel mutant, paraShu Our analyses using chromosome deficiencies, gene-specific RNA interference, and single-gene mutants revealed that a null allele of glutathione S-transferase S1 (GstS1) dominantly suppresses paraShu phenotypes. Reduced GstS1 function also suppressed phenotypes of other seizure-prone Nav-channel mutants, paraGEFS+ and parabss Notably, paraShu mutants expressed 50% less GstS1 than wild-type flies, further supporting the notion that paraShu and GstS1 interact functionally. Introduction of a loss-of-function GstS1 mutation into a paraShu background led to up- and down-regulation of various genes, with those encoding cytochrome P450 (CYP) enzymes most significantly over-represented in this group. Because GstS1 is a fly ortholog of mammalian hematopoietic prostaglandin D synthase, and in mammals CYPs are involved in the oxygenation of polyunsaturated fatty acids including prostaglandins, our results raise the intriguing possibility that bioactive lipids play a role in GstS1-mediated suppression of paraShu phenotypes.


Subject(s)
Drosophila Proteins , Glutathione Transferase , Voltage-Gated Sodium Channels , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Loss of Function Mutation , Seizures , Voltage-Gated Sodium Channels/genetics
2.
Methods Mol Biol ; 1941: 167-188, 2019.
Article in English | MEDLINE | ID: mdl-30707434

ABSTRACT

Recent findings indicate that glutamate receptors are regulated at the epigenetic level through the posttranslational modification of histones and through DNA methylation. Furthermore, dysregulation of these marks in the context of neurological disease has been shown to influence glutamate receptor function. Over the past two decades, an appreciation for the essential role epigenetic mechanisms play in nervous system function has led to the development of many methods and tools to map, quantitate, and manipulate these chromatin marks. Here we describe two popular methods used to quantitate DNA methylation levels at the gene or nucleotide level. The first, cloning-based bisulfite sequencing involves modification of DNA samples using the chemical sodium bisulfite (BS) , which deaminates all unmethylated cytosines to form uracil. Subsequent PCR amplification converts the uracils to thymine, leaving any cytosines in the PCR product representative of methylation. Fragments are then cloned and sequenced to quantitate the percentage of methylation at each cytosine. The second technique, methyl-binding domain capture (MBDCap), involves shearing the genomic DNA into fragments via sonication. Samples are then incubated with magnetic beads conjugated to methyl-binding domain (MBD) peptides to bind and enrich fragments containing methylated CpGs. Quantitation of DNA methylation levels are then measured indirectly using qRT-PCR with primers specific to the region of interest. Because these methods do not require advanced technical knowledge and can be performed with common laboratory equipment, they are great options for interrogating DNA methylation patterns at the level of the gene, the regulatory region, or in the case of bisulfite sequencing, the nucleotide.


Subject(s)
DNA Methylation , Gene Expression Regulation , Polymerase Chain Reaction/methods , Receptors, Glutamate/physiology , Regulatory Sequences, Ribonucleic Acid , Sequence Analysis, DNA/methods , Sulfites/chemistry , Epigenesis, Genetic , Humans , Receptors, Glutamate/genetics
3.
eNeuro ; 3(5)2016.
Article in English | MEDLINE | ID: mdl-27844061

ABSTRACT

Shudderer (Shu) is an X-linked dominant mutation in Drosophila melanogaster identified more than 40 years ago. A previous study showed that Shu caused spontaneous tremors and defects in reactive climbing behavior, and that these phenotypes were significantly suppressed when mutants were fed food containing lithium, a mood stabilizer used in the treatment of bipolar disorder (Williamson, 1982). This unique observation suggested that the Shu mutation affects genes involved in lithium-responsive neurobiological processes. In the present study, we identified Shu as a novel mutant allele of the voltage-gated sodium (Nav) channel gene paralytic (para). Given that hypomorphic para alleles and RNA interference-mediated para knockdown reduced the severity of Shu phenotypes, Shu was classified as a para hypermorphic allele. We also demonstrated that lithium could improve the behavioral abnormalities displayed by other Nav mutants, including a fly model of the human generalized epilepsy with febrile seizures plus. Our electrophysiological analysis of Shu showed that lithium treatment did not acutely suppress Nav channel activity, indicating that the rescue effect of lithium resulted from chronic physiological adjustments to this drug. Microarray analysis revealed that lithium significantly alters the expression of various genes in Shu, including those involved in innate immune responses, amino acid metabolism, and oxidation-reduction processes, raising the interesting possibility that lithium-induced modulation of these biological pathways may contribute to such adjustments. Overall, our findings demonstrate that Nav channel mutants in Drosophila are valuable genetic tools for elucidating the effects of lithium on the nervous system in the context of neurophysiology and behavior.


Subject(s)
Anticonvulsants/pharmacology , Drosophila Proteins/metabolism , Lithium Compounds/pharmacology , Mutation , Seizures/drug therapy , Seizures/metabolism , Sodium Channels/metabolism , Animals , Animals, Genetically Modified , Anticonvulsants/pharmacokinetics , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Gene Expression/drug effects , Lithium Compounds/pharmacokinetics , Male , Membrane Transport Modulators/pharmacokinetics , Membrane Transport Modulators/pharmacology , Motor Activity/drug effects , Motor Activity/physiology , Muscles/drug effects , Muscles/metabolism , Neurons/drug effects , Neurons/metabolism , Phenotype , Sequence Homology, Amino Acid , Sodium Channels/genetics
4.
J Neurosci ; 36(4): 1324-35, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26818519

ABSTRACT

Aberrant gene expression within the hippocampus has recently been implicated in the pathogenesis of obesity-induced memory impairment. Whether a dysregulation of epigenetic modifications mediates this disruption in gene transcription has yet to be established. Here we report evidence of obesity-induced alterations in DNA methylation of memory-associated genes, including Sirtuin 1 (Sirt1), within the hippocampus, and thus offer a novel mechanism by which SIRT1 expression within the hippocampus is suppressed during obesity. Forebrain neuron-specific Sirt1 knock-out closely recapitulated the memory deficits exhibited by obese mice, consistent with the hypothesis that the high-fat diet-mediated reduction of hippocampal SIRT1 could be responsible for obesity-linked memory impairment. Obese mice fed a diet supplemented with the SIRT1-activating molecule resveratrol exhibited increased hippocampal SIRT1 activity and preserved hippocampus-dependent memory, further strengthening this conclusion. Thus, our findings suggest that the memory-impairing effects of diet-induced obesity may potentially be mediated by neuroepigenetic dysregulation of SIRT1 within the hippocampus. SIGNIFICANCE STATEMENT: Previous studies have implicated transcriptional dysregulation within the hippocampus as being a relevant pathological concomitant of obesity-induced memory impairment, yet a deeper understanding of the basis for, and etiological significance of, transcriptional dysregulation in this context is lacking. Here we present the first evidence of epigenetic dysregulation (i.e., altered DNA methylation and hydroxymethylation) of memory-related genes, including Sirt1, within the hippocampus of obese mice. Furthermore, experiments using transgenic and pharmacological approaches strongly implicate reduced hippocampal SIRT1 as being a principal pathogenic mediator of obesity-induced memory impairment. This paper offers a novel working model that may serve as a conceptual basis for the development of therapeutic interventions for obesity-induced memory impairment.


Subject(s)
Hippocampus/metabolism , Memory Disorders/etiology , Neurons/metabolism , Obesity/complications , Obesity/physiopathology , Sirtuin 1/metabolism , Animals , Antioxidants/pharmacology , DNA Methylation/drug effects , DNA Methylation/genetics , Diet, High-Fat/adverse effects , Dietary Supplements , Disease Models, Animal , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Insulin/metabolism , Male , Memory Disorders/diet therapy , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/chemically induced , Prosencephalon/pathology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Resveratrol , Sirtuin 1/genetics , Spatial Memory/drug effects , Spatial Memory/radiation effects , Stilbenes/pharmacology , Time Factors
5.
Neuroepigenetics ; 4: 12-27, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26644996

ABSTRACT

A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the CNS. In this study, we used Tet1 gene knockout (Tet1KO) mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to: altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning) and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

6.
Neuron ; 79(6): 1086-93, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-24050399

ABSTRACT

Dynamic changes in 5-methylcytosine (5mC) have been implicated in the regulation of gene expression critical for consolidation of memory. However, little is known about how these changes in 5mC are regulated in the adult brain. The enzyme methylcytosine dioxygenase TET1 (TET1) has been shown to promote active DNA demethylation in the nervous system. Therefore, we took a viral-mediated approach to overexpress the protein in the hippocampus and examine its potential involvement in memory formation. We found that Tet1 is a neuronal activity-regulated gene and that its overexpression leads to global changes in modified cytosine levels. Furthermore, expression of TET1 or a catalytically inactive mutant (TET1m) resulted in the upregulation of several neuronal memory-associated genes and impaired contextual fear memory. In summary, we show that neuronal Tet1 regulates DNA methylation levels and that its expression, independent of its catalytic activity, regulates the expression of CNS activity-dependent genes and memory formation.


Subject(s)
Central Nervous System/physiology , Chrysenes/metabolism , DNA-Binding Proteins/physiology , Memory/physiology , Proto-Oncogene Proteins/physiology , Transcription, Genetic/genetics , Adenoviridae/genetics , Analysis of Variance , Animals , Animals, Newborn , Cells, Cultured , Conditioning, Classical/physiology , Convulsants/toxicity , Cytosine/metabolism , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Flurothyl/toxicity , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hippocampus/cytology , Hydroxylation/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mixed Function Oxygenases , Motor Activity/genetics , Mutation/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/physiology , Potassium Chloride/pharmacology , Proto-Oncogene Proteins/genetics , Seizures/chemically induced , Seizures/metabolism , Time Factors , Transduction, Genetic
7.
Front Psychiatry ; 4: 60, 2013.
Article in English | MEDLINE | ID: mdl-23805109

ABSTRACT

Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by intrusive and persistent memories of a psychologically traumatic event that leads to significant functional and social impairment in affected individuals. The molecular bases underlying persistent outcomes of a transient traumatic event have remained elusive for many years, but recent studies in rodents have implicated epigenetic modifications of chromatin structure and DNA methylation as fundamental mechanisms for the induction and stabilization of fear memory. In addition to mediating adaptations to traumatic events that ultimately cause PTSD, epigenetic mechanisms are also involved in establishing individual differences in PTSD risk and resilience by mediating long-lasting effects of genes and early environment on adult function and behavior. In this review, we discuss the current evidence for epigenetic regulation of PTSD in human studies and in animal models and comment on ways in which these models can be expanded. In addition, we identify key outstanding questions in the study of epigenetic mechanisms of PTSD in the context of rapidly evolving technologies that are constantly updating and adjusting our understanding of epigenetic modifications and their functional roles. Finally, we discuss the potential application of epigenetic approaches in identifying markers of risk and resilience that can be utilized to promote early intervention and develop therapeutic strategies to combat PTSD after symptom onset.

8.
Neurosci Res ; 64(4): 413-20, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19410610

ABSTRACT

To gain insight into the basic neurobiological processes regulated by lithium--an effective drug for bipolar disorder--we used Affymetrix Genome Arrays to examine lithium-induced changes in genome-wide gene expression profiles of head mRNA from the genetic model organism Drosophila melanogaster. First, to identify the individual genes whose transcript levels are most significantly altered by lithium, we analyzed the microarray data with stringent criteria (fold change>2; p<0.001) and evaluated the results by RT-PCR. This analysis identified 12 genes that encode proteins with various biological functions, including an enzyme responsible for amino acid metabolism and a putative amino acid transporter. Second, to uncover the biological pathways involved in lithium's action in the nervous system, we used less stringent criteria (fold change>1.2; FDR<0.05) and assigned the identified 66 lithium-responsive genes to biological pathways using DAVID (Database for Annotation, Visualization and Integrated Discovery). The gene ontology categories most significantly affected by lithium were amino acid metabolic processes. Taken together, these data suggest that amino acid metabolism is important for lithium's actions in the nervous system, and lay a foundation for future functional studies of lithium-responsive neurobiological processes using the versatile molecular and genetic tools that are available in Drosophila.


Subject(s)
Brain/drug effects , Brain/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Gene Expression Regulation/drug effects , Lithium Chloride/pharmacology , Amino Acids/metabolism , Animals , Antimanic Agents/pharmacology , Drosophila Proteins/biosynthesis , Drosophila Proteins/drug effects , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Gene Expression Profiling/methods , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/drug effects , Nerve Tissue Proteins/genetics , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...