Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 214(1-2): 63-5, 2001 Feb 19.
Article in English | MEDLINE | ID: mdl-11282238

ABSTRACT

This study investigates the screening effect of poly(ethylene glycol)-phospholipids (PE-PEG) on the interaction of avidin with PEGylated liposomes containing surface-bound biotin ligands. The influence of grafting density and lipopolymer chain length is examined. A simple fluorescence assay involving a receptor-mediated fluorescence increase of BODIPY-labeled avidin upon binding to biotinylated lipids is employed to study the screening effect of submicellar concentrations of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine-N-[poly(ethylene glycol)-2000] (PE-PEG(2000)) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine-N-[poly(ethylene glycol)-5000] (PE-PEG(5000)) incorporated into 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. The results show that incorporation of lipopolymers into DPPC lipid bilayers reduces binding of avidin to the biotinylated liposomes, and it is found that the screening effect of PE-PEG(5000) is stronger than that for PE-PEG(2000). Thus, the results reveal that both the grafting density and the polymer length of the PE-PEG lipopolymers are of importance for the ability of water-soluble macromolecules to reach the surface of PEG liposomes. Furthermore, it is found that none of the lipopolymers completely prevents avidin from reaching the surface-bound biotin ligands.


Subject(s)
Avidin/metabolism , Liposomes/metabolism , Polyethylene Glycols/pharmacology , Biotin/metabolism , Drug Carriers , Fluorescence
2.
J Liposome Res ; 11(1): 31-42, 2001.
Article in English | MEDLINE | ID: mdl-19530917

ABSTRACT

Fluoresence technique involving a receptor-mediated fluorescence increase of bodipy-labeled avidin upon binding to biotinylated lipids has been used to investigate the steric barrier effect of submicellar concentrations of poly(ethylene glycol)-phospholipids (PE-PEG(2000) and PE-PEG(5000)) incorporated into pure DPPC liposomes as well as PE-PEG(5000) incorporated into DPPC liposomes containing 20 mol% cholesterol. It is found that the incorporation of PE-PEG lipopolymers into DPPC lipid bilayers lowers the receptor-mediated adhesion of avidin to the biotinylated liposomes. The most pronounced screening effect is observed at surface densities corresponding to the mushroom conformation of the polymer. Furthermore, the results show that the steric baric effect induced by the surface-grafted polymers becomes stronger when the length of the polymer chain increases. In addition it is found that cholesterol improves the barrier effect of PE-PEG(5000) at low lipopolymer concentrations while no effect is observed at higher concentrations. The results reveal that both the surface density and the polymer length of the PE-PEG lipopolymers play a major role for the accessibility of avidin to biotin surface receptors. However, none of the lipopolymers were capable of completely preventing avidin from reaching the surface bound ligands. Cholesterol only affected the barrier effect at lipopolymer concentrations below the mushroom to brush transition. Consequently, from a steric stabilization viewpoint there is no rationale for incorporating cholesterol into liposomes when the PE-PEG lipopolymer concentration exceeds the mushroom to brush transition. The results presented in this study are of importance in relation to a deeper understanding of the interaction of liposome degrading enzymes and proteins with polymer covered liposomes as well as for the receptor-based targeting and interaction of liposomes with cell surface receptors.

SELECTION OF CITATIONS
SEARCH DETAIL
...