Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35160576

ABSTRACT

A blend of low molecular azo glass (AZOPD) and polystyrene (PS) were used for the systematic investigation of photo-induced stretching and recovery of nanoimprinted structures. For this purpose, light and heat was used as recovery stimuli. The AZOPD/PS microstructures, fabricated with thermal nanoimprint lithography (tNIL), comprises three different shapes (circles, crosses and squares) and various concentrations of AZOPD fractions. The results show a concentration-dependent reshaping. Particularly the sample with 43 w-% of the AZOPD fraction have shown the best controllable recovery for the used parameters. A possible explanation for shape recovery might be the stabilizing effect of the PS-matrix.

2.
Molecules ; 25(10)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456151

ABSTRACT

In nanoimprint lithography (NIL), a pattern is created by mechanical deformation of an imprint resist via embossing with a stamp, where the adhesion behavior during the filling of the imprint stamp and its subsequent detachment may impose some practical challenges. Here we explored thermal and reverse NIL patterning of polyvinylferrocene and vinylferrocene-methyl methacrylate copolymers to prepare complex non-spherical objects and patterns. While neat polyvinylferrocene was found to be unsuitable for NIL, freshly-prepared vinylferrocene-methyl methacrylate copolymers, for which identity and purity were established, have been structured into 3D-micro/nano-patterns using NIL. The cross-, square-, and circle-shaped columnar structures form a 3 × 3 mm arrangement with periodicity of 3 µm, 1 µm, 542 nm, and 506 nm. According to our findings, vinylferrocene-methyl methacrylate copolymers can be imprinted without further additives in NIL processes, which opens the way for redox-responsive 3D-nano/micro-objects and patterns via NIL to be explored in the future.


Subject(s)
Ferrous Compounds/chemistry , Methylmethacrylate/chemistry , Nanocomposites/chemistry , Polymers/chemistry , Vinyl Compounds/chemistry , Ferrous Compounds/chemical synthesis , Methylmethacrylate/chemical synthesis , Molecular Imprinting , Polymers/chemical synthesis , Polyvinyls/chemical synthesis , Polyvinyls/chemistry , Surface Properties , Vinyl Compounds/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...