Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 26(6): 983-996, 2023 06.
Article in English | MEDLINE | ID: mdl-37248338

ABSTRACT

Despite the strong evidence linking the transactive response DNA-binding protein 43 (TDP-43) aggregation to the pathogenesis of frontotemporal lobar degeneration with TDP-43, amyotrophic lateral sclerosis and several neurodegenerative diseases, our knowledge of the sequence and structural determinants of its aggregation and neurotoxicity remains incomplete. Herein, we present a new method for producing recombinant full-length TDP-43 filaments that exhibit sequence and morphological features similar to those of brain-derived TDP-43 filaments. We show that TDP-43 filaments contain a ß-sheet-rich helical amyloid core that is fully buried by the flanking structured domains of the protein. We demonstrate that the proteolytic cleavage of TDP-43 filaments and exposure of this amyloid core are necessary for propagating TDP-43 pathology and enhancing the seeding of brain-derived TDP-43 aggregates. Only TDP-43 filaments with exposed amyloid core efficiently seeded the aggregation of endogenous TDP-43 in cells. These findings suggest that inhibiting the enzymes mediating cleavage of TDP-43 aggregates represents a viable disease-modifying strategy to slow the progression of amyotrophic lateral sclerosis and other TDP-43 proteinopathies.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , TDP-43 Proteinopathies , Humans , Amyotrophic Lateral Sclerosis/metabolism , TDP-43 Proteinopathies/pathology , Frontotemporal Lobar Degeneration/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...