Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 25(22): 6709-6720, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31573956

ABSTRACT

PURPOSE: The success of checkpoint blockade has led to a significant increase in the development of a broad range of immunomodulatory molecules for the treatment of cancer, including agonists against T-cell costimulatory receptors, such as OX40. Unlike checkpoint blockade, where complete and sustained receptor saturation may be required for maximal activity, the optimal dosing regimen and receptor occupancy for agonist agents is less well understood and requires further study. EXPERIMENTAL DESIGN: We integrated both preclinical and clinical biomarker data sets centered on dose, exposure, receptor occupancy, receptor engagement, and downstream pharmacodynamic changes to model the optimal dose and schedule for the OX40 agonist antibody BMS-986178 alone and in combination with checkpoint blockade. RESULTS: Administration of the ligand-blocking anti-mouse surrogate antibody OX40.23 or BMS-986178 as monotherapy or in combination with checkpoint blockade led to increased peripheral CD4+ and CD8+ T-cell activation in tumor-bearing mice and patients with solid tumors, respectively. OX40 receptor occupancy between 20% and 50% both in vitro and in vivo was associated with maximal enhancement of T-cell effector function by anti-OX40 treatment, whereas a receptor occupancy > 40% led to a profound loss in OX40 receptor expression, with clear implications for availability for repeat dosing. CONCLUSIONS: Our results highlight the value of an integrated translational approach applied during early clinical development to aggregate preclinical and clinical data in an effort to define the optimal dose and schedule for T-cell agonists in the clinic.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/pathology , Receptors, OX40/agonists , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Cytokines/metabolism , Disease Models, Animal , Humans , Immunophenotyping , Mice , Mice, Transgenic , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/methods , Neoplasm Metastasis , Neoplasm Staging , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...