Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15328, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961237

ABSTRACT

In the present study, the effect of chloride ions on the oxidative degradation of an alcohol ethoxylate (Brij 30) by persulfate (PS)/UV-C was experimentally explored using Brij 30 aqueous solution (BAS) and a domestic wastewater treatment plant effluent spiked with Brij 30. Brij 30 degradation occurred rapidly during the early stages of oxidation without affecting the water/wastewater matrix. Mineralization of intermediates of Brij 30 degradation markedly influenced by presence of chloride ions. Chloride ions at concentrations up to 50 mg/L accelerated the mineralization through reactions involving reactive chlorine species, which reduced the sink of SO4·- by Cl- scavenging at both initial pH of 6.0 and 3.0 in the case of BAS. The fastest mineralization was achieved under acidic conditions. The WWTP effluent matrix significantly influenced mineralization efficacy of the intermediates. Co-existence of HCO 3 - and Cl- anions accelerated the mineralization of degradation products. Organic matter originating from the WWTP effluent itself had an adverse effect on the mineralization rate. The positive effects of organic and inorganic components present in the WWTP effluent were ranked in the following order of increasing influence: (Organic matter originating from the effluent + Cl- + HCO 3 - ) < (Cl-) < (Cl- + HCO 3 - ).

2.
Sci Rep ; 13(1): 15852, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37740043

ABSTRACT

A synergistic combination of electrocoagulation-electrooxidation (EC-EO) process was used in the current study to treat domestic greywater. The EC process consisted of an aluminium (Al) anode and an iron (Fe) cathode, and the EO process consisted of titanium with platinum coating mesh (Ti/Pt) as an anode and stainless steel as a cathode. The effect of operative variables, namely current density, pH, EC time and EO time, on the removal of chemical oxygen demand (COD), colour, turbidity, and total organic carbon (TOC) was studied and optimised using Response Surface Methodology (RSM). The results showed that although the pH affected the removal of all studied pollutants, it had more effect on turbidity removal with a contribution of 88.44%, while the current density had the main dominant effect on colour removal with a contribution of 73.59%. It was also found that at optimal operation conditions for a current density of 2.6 A, an initial pH of 4.67, an EC time of 31.67 min, and an EO time of 93.28 min led to a COD, colour, turbidity, and TOC removal rates of 96.1%, 97.5%, 90.9%, and 98%, respectively, which were close to the predicted results. The average operating cost and energy consumption for the removal of COD, colour, turbidity, and TOC were 0.014 $/m3 and 0.01 kWh/kg, 0.083 $/m3 and 0.008 kWh/kg, 0.075 $/m3 and 0.062 kWh/kg, and 0.105 $/m3 and 0.079 kWh/kg, respectively.

3.
Molecules ; 28(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903653

ABSTRACT

Hexavalent chromium (Cr(VI)) is a toxic, mutagenic, teratogenic, and carcinogenic species. Its origin is in industrial activities. Therefore, its effective control is realized on a source basis. Although chemical methods proved effective in removing Cr(VI) from wastewaters, more economic solutions with a minimum sludge production have been sought. Among them, the use of electrochemical processes has emerged as a viable solution to the problem. Much research was conducted in this area. The aim of this review paper is to make a critical evaluation of the literature on Cr(VI) removal by electrochemical methods, particularly electrocoagulation with sacrificial electrodes, and to assess the present data as well as to point out the areas that need further elaboration. Following the review of the theoretical concepts of electrochemical processes, the literature on the electrochemical removal of Cr(VI) was evaluated on the basis of important elements of the system. Among them are initial pH, initial Cr(VI) concentration, current density, type and concentration of supporting electrolyte, and the material of electrodes and their operating characteristics and process kinetics. Dimensionally stable electrodes that realize the reduction process without producing any sludge were evaluated separately. Applications of electrochemical methods to a wide spectrum of industrial effluents were also assessed.

4.
Environ Technol ; 44(2): 150-160, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34357852

ABSTRACT

ABSTRACTThe present study focused on the usability of scallop shell coated Fe2O3 nanoparticles as an eco-friendly new absorbent in the treatment of tetracycline (TC). The process performance in terms of TC removal was investigated at different operating conditions, i.e. at solution pH of 3-11, Fe2O3-scallop dosage of 0.4-2.4 g L-1, initial TC content of 20-120 mg L-1 and temperature of 25-55°C. Solution pH of 7 yielded the highest TC removal efficiency (99%). At this pH value, almost complete TC removal was achieved at a Fe2O3-scallop shell nanocomposite dose of 1.6 g L-1 and 25°C. The responsible TC removal mechanism is suggested as the non-electrical π-π dispersion interaction between the bulk π system on the absorbent surface and TC molecules bearing both benzene rings and double bonds at this solution pH. TC removal efficiency appreciably enhanced up to the Fe2O3-scallop dosage of 1.6 g L-1 being an optimum. Adsorption rate was found to be fast at lower initial TC concentrations than 40 mg L-1. The effect of temperature on TC removal efficiency was insignificant. Adsorption followed the pseudo-second-order kinetic model. Experimental data perfectly fitted by the Langmuir equation. The maximum adsorption capacity was calculated as 49.26 mg g-1. Thermodynamic analysis demonstrated that adsorption process was spontaneous process and endothermic. The results obtained from the present study proved the excellent performance of scallop shell coated Fe2O3 nanoparticles as an eco-friendly adsorbent in TC treatment.


Subject(s)
Nanocomposites , Pectinidae , Water Pollutants, Chemical , Water Purification , Animals , Water Purification/methods , Anti-Bacterial Agents , Tetracycline/analysis , Tetracycline/chemistry , Thermodynamics , Adsorption , Nanocomposites/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
5.
Environ Technol ; : 1-14, 2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36174186

ABSTRACT

Forward osmosis is a water separation process that uses the natural energy of osmotic pressure to separate water from dissolved solutes through a semipermeable membrane. One of the major challenges using this process is the rejection water which contains high content of pollutants, hindering its practical application. Herein, for the first time, this work introduces a coupled electrochemical-physical process including iron-electrocoagulation/filtration/sedimentation as a cost-effective treatment to the forward osmosis reject water containing hexavalent chromium to be reclaimed. The synergistic treatment was optimized through a central composite design and response surface methodology to enhance hexavalent Cr removal and minimize operating costs, electrical energy consumption, and settled sludge volume. A 90.0% chromium removal was achieved under optimized conditions: electrolysis time of 59.7 min and current of 1.24 A (J = 6.32 mA cm-2). In addition, operating costs of 0.014 USD m-3, electrical energy consumption of 0.005 kWh m-3, and settled sludge volume of 445 mL L-1 were obtained.

6.
J Water Process Eng ; 49: 103077, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35990175

ABSTRACT

The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.

7.
J Environ Chem Eng ; 9(5): 106296, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34485054

ABSTRACT

Upon the outbreak of COVID-19 pandemic, detection and quantification of SARS-CoV-2 genetic material in domestic wastewater have led to an increase in the efforts to define and implement the wastewater-based epidemiology (WBE). This application provides valuable information to define local contamination monitoring, emergence of COVID-19 and its variants and many other aspects to cope with and control the pandemic. WBE surveillance, however, requires several consecutive steps such as sampling, pretreatment and concentration of samples, and detection and quantification of SARS-CoV-2 genetic material in wastewater. In this review paper, the literature regarding to all these applications reviewed considering their advantages, disadvantages as well as their applicability. A specific emphasis was placed on the last step, detection and quantification since it covers the most critical procedure for concentrating the virus before measurement. Evaluation of the existing data indicating ultrafiltration, polyethylene glycol (PEG) precipitation and electronegative membrane filtration (ENMF) were the most promising techniques for concentration. The ongoing studies are proposed to be continued within the context of standard methods. Future research needs are delineated and suggestions are made for details.

8.
Pathogens ; 10(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34451472

ABSTRACT

Wastewater-based epidemiology (WBE) has a long history of identifying a variety of viruses from poliovirus to coronaviruses, including novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The presence and detection of SARS-CoV-2 in human feces and its passage into the water bodies are significant public health challenges. Hence, the hot issue of WBE of SARS-CoV-2 in the coronavirus respiratory disease (COVID-19) pandemic is a matter of utmost importance (e.g., SARS-CoV-1). The present review discusses the background, state of the art, actual status, and prospects of WBE, as well as the detection and quantification protocols of SARS-CoV-2 in wastewater. The SARS-CoV-2 detection studies have been performed in different water matrixes such as influent and effluent of wastewater treatment plants, suburban pumping stations, hospital wastewater, and sewer networks around the globe except for Antarctica. The findings revealed that all WBE studies were in accordance with clinical and epidemiological data, which correlates the presence of SARS-CoV-2 ribonucleic acid (RNA) with the number of new daily positive cases officially reported. This last was confirmed via Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR) testing which unfortunately is not suitable for real-time surveillance. In addition, WBE concept may act as a faster protocol to alert the public health authorities to take administrative orders (possible re-emerging infections) due to the impracticality of testing all citizens in a short time with limited diagnostic facilities. A comprehensive and integrated review covering all steps starting from sampling to molecular detection of SARS-CoV-2 in wastewater has been made to guide for the development well-defined and reliable protocols.

9.
11.
Environ Technol ; 37(4): 446-451, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25833738

ABSTRACT

In the present study, ettringite precipitation was theoretically and experimentally evaluated as a means of sulphate removal. The results showed that ettringite precipitation is an effective and reliable method for sulphate removal. Synthetically prepared samples which were simulated to total wastewaters originating from the textile industry (sulphate concentration of 0.06 M) and to dye bath effluent (sulphate concentration of 0.22 M) were subjected to ettringite precipitation using the systems with Na2SO4-AlCl3-Ca(OH)2-NaOH, Na2SO4-AlCl3-Ca(OH)2, and Na2CO3-Na2SO4-AlCl3-Na(OH)2. An equilibrium model involving precipitation more than one solid phase and with ionic strength correction was used to predict the sulphate removal efficiency as well as solution composition. The optimum pH for ettringite precipitation in all systems was found to be around 12.0. By the application of the method, 0.06 M initial sulphate concentration was reduced down to 60 mg/L for synthetically prepared samples and 325 mg/L for real wastewater. For the concentrated samples of 0.22 M initial sulphate, remaining sulphate levels varying between 230 and 280 mg/L were obtained for both synthetic and real wastewater samples.

12.
Water Sci Technol ; 72(2): 194-202, 2015.
Article in English | MEDLINE | ID: mdl-26177401

ABSTRACT

In the present study aqueous solutions of Brij30, an alcohol ethoxylate surfactant, were photocatalytically and photochemically treated by employing the TiO2/UV-A, H2O2/UV-C and persulfate (PS)/UV-C processes. During TiO2/UV-A treatment, even in short reaction periods (10 minutes), high rates of Brij30 removals were achieved; however, longer experiment periods (240-480 minutes) were needed in order to obtain notable total organic carbon (TOC) removals. Increasing the TiO2 dosage exhibited a positive effect on treatment efficiencies. For initial pH value of 3.0, increasing the TiO2 dosage from 1.0 to 1.5 g/L resulted in an improvement in Brij30 removal from 64% to 79% after 10 minutes whereas 68 and 88% TOC removals were observed after 480 minutes, respectively. Brij30 removal was very fast and complete via both H2O2/UV-C and PS/UV-C treatments, accompanied with significant mineralization rates ranging between 74 and 80%. Toxicity assessed by Vibrio fischeri, was found to be similar to that of the original Brij30 solution during H2O2/UV-C treatment, while in the PS/UV-C process, the relative inhibition of Brij30 towards V. fischeri fluctuated throughout the treatment and eventually non-toxic products were formed by the oxidation of SO4•- radicals.


Subject(s)
Hydrogen Peroxide/chemistry , Polyethylene Glycols/chemistry , Sulfates/chemistry , Surface-Active Agents/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Aliivibrio fischeri/drug effects , Oxidation-Reduction , Polidocanol , Polyethylene Glycols/pharmacology , Surface-Active Agents/pharmacology , Ultraviolet Rays , Water Pollutants, Chemical/pharmacology , Water Purification/instrumentation
13.
Environ Technol ; 35(13-16): 1577-88, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24956747

ABSTRACT

In the present study, the treatability of indigo dyeing effluents by the electrocoagulation (EC) process using stainless steel electrodes was experimentally investigated. The samples used were concentrated with main pollutant parameters of chemical oxygen demand (COD) (1000-1100 mg/L), reduced sulphur species (over 2000 mg SO2-(3)/L), and colour (0.12-0.13 1/cm). The study focused on the effect of main operation parameters on the EC process performance in terms of abatement of reduced sulphur compounds as well as decolourization and organic matter reduction. Results indicated that the performance of EC proved to be high providing total oxidation of the reduced sulphur compounds, almost complete decolourization, and COD removal up to 90%. Increasing applied current density from 22.5 to 45 mA/cm2 appreciably improved abatement of the reduced sulphur compounds for Sample I, but a further increase in the applied current density to 67.5 mA/cm2 did not accelerate the conversion rate to sulphate. The process performance was adversely affected by increasing initial concentration of the reduced sulphur compounds. Decolourization and organic matter removal efficiency enhanced with increasing applied current density. The main removal mechanism of the reduced sulphur compounds by EC was explained as conversion to sulphate via oxidation. Conversion rate to sulphate fitted pseudo-first-order kinetics very well.


Subject(s)
Coloring Agents/chemistry , Electrochemical Techniques , Sulfur Compounds/chemistry , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Industrial Waste , Organic Chemicals/chemistry
14.
Environ Technol ; 33(13-15): 1467-75, 2012.
Article in English | MEDLINE | ID: mdl-22988603

ABSTRACT

Colour removal from industrial effluents, particularly from the textile industry, has become an important requirement as the adverse effects ofdyestuffs, such as toxicity, on the environment have been proven. Adsorption is a commonly used treatment method for colour removal. Although activated carbon is very effective for this purpose, a number of natural materials and waste materials, such as waste sludges generated from treatment systems, have been tested to reduce the cost of the process. In this paper, sludges arising from the operation of an electrocoagulation process that used stainless steel or aluminium electrodes were investigated as adsorbents for decolorization of reactive dyestuffs. Electrocoagulation waste sludges produced with the use of stainless steel electrodes provided higher than 90% or complete decolorization of Crimson HEXL, Yellow HE4R and RB5 dyestuffs. The sludge produced with aluminium electrodes yielded colour adsorption between 95% and 100% at a 1 g/L dose and pH 8.5-9.1 for two of the dyestuffs; the removal of RB5 did not exceed 60% up to a 4.76 g/L dose. FeCl3 coagulation and adsorption using freshly precipitated coagulation sludge resulted in poor colour removals of 10% for all three dyestuffs. The superior colour adsorption performance of electrocoagulation waste sludges was attributed to modification of the surface properties of the sludges during the electrocoagulation operation. A batch-wise kinetic study indicated that the adsorption of RB5 on to electrocoagulation waste sludges was well fitted by the pseudo-second-order kinetic model, suggesting the intra-particle diffusion process as the rate-limiting step of the adsorption process.


Subject(s)
Coloring Agents/chemistry , Electrocoagulation/methods , Textile Industry , Waste Disposal, Fluid/methods , Adsorption , Aluminum , Electrocoagulation/instrumentation , Electrodes , Industrial Waste , Sewage , Waste Disposal, Fluid/instrumentation
15.
Photochem Photobiol Sci ; 10(3): 408-13, 2011 Mar 02.
Article in English | MEDLINE | ID: mdl-20953514

ABSTRACT

In this study, the degradation of dimethyl phthalate (DMP), taken as model compound for phthalate esters, by the photo-assisted peroxymonosulfate (PMS) process was investigated. The high oxidation potential of hydroxyl and sulfate radicals generated by the activation of PMS under UV-C light irradiation was used to completely oxidize aqueous DMP solutions. Experiments were conducted at varying initial pH values (3.0, 6.0, and 9.0) and PMS concentrations (0-60 mM) to evaluate the effect of different reaction conditions on DMP treatment performance with the PMS/UV-C process. It was observed that lowering the initial reaction pH slightly improved the degradation rate of DMP. On the contrary, TOC abatements were slightly enhanced with increasing initial reaction pH. An adequate (optimum) PMS concentration of 40 mM resulted in the fastest and highest DMP degradation rates and efficiencies, respectively. At an initial concentration of 100 mg L(-1), more than 95% DMP removal was obtained after only 20 min under PMS/UV-C treatment conditions. For the proposed adequate PMS concentration (40 mM) the lowest electrical energy per order (EE/O) value was calculated as 2.9 kW h m(-3) order(-1).

16.
J Hazard Mater ; 171(1-3): 932-40, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19615815

ABSTRACT

In this study, treatment of phthalates by electrocoagulation employing stainless steel electrodes was investigated using dimethyl phthalate (DMP) as a model compound. DMP was completely destructed within 30 min up to the high initial concentration of 100mg/L while total mineralization was also obtained within a couple of hours. The applied current density of 22.5 mA/cm(2) and electrolyte (NaCl) concentrations varying between 1000 and 1500 mg/L as chloride resulted in the highest treatment performance. The initial solution pH (2-6) had practically no effect on the process efficiency. Desorption experiments and the reaction rates obtained for DMP, COD and TOC abatements appeared to be a strong evidence of an oxidative removal mechanism. DMP removal fitted first order kinetics. COD and TOC removals began after the total DMP removal and also fitted first order kinetics. Activated sludge inhibition experiments revealed that toxicity could be significantly reduced by electrocoagulation application.


Subject(s)
Electrocoagulation/methods , Phthalic Acids/chemistry , Stainless Steel/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Chlorides/chemistry , Electrodes , Endocrine Disruptors/chemistry , Esters , Hydrogen-Ion Concentration , Kinetics , Oxygen/chemistry , Sewage , Sodium Chloride/chemistry , Time Factors , Water Pollutants, Chemical/chemistry
17.
Photochem Photobiol Sci ; 8(5): 620-7, 2009 May.
Article in English | MEDLINE | ID: mdl-19424534

ABSTRACT

This paper discusses the feasibility of the ultraviolet radiation-hydrogen peroxide (H(2)O(2)/UV-C) process as an advanced oxidation process (AOP) in the treatment of endocrine disrupting compounds (EDC). Dimethyl phthalate (DMP) was chosen as the model compound owing to its classification as an EDC. Experiments have been conducted at various pH values (3.5, 6.0 and 9.0) and initial H(2)O(2) concentrations (0-60 mM) in a batch reactor equipped with a low-pressure mercury UV-C lamp in order to evaluate the optimal operation conditions of the H(2)O(2)/UV-C process. The most effective pH value for the degradation of DMP by H(2)O(2)/UV-C treatment was found as 6.0. DMP abatement increased with increasing H(2)O(2) concentrations from 5 to 30 mM. Further increase in initial H(2)O(2) concentration, however, reduced both the rate and extent of DMP removal as well as chemical oxygen demand (COD) and total organic carbon (TOC) removals. A simple kinetic model was proposed for DMP, COD and TOC abatements confirmed pseudo-first-order reaction. The electrical energy per order (EE/O) values for DMP oxidation and TOC mineralization were calculated as 3.3 and 19 kWh m(-3) order(-1) respectively for the optimum treatment conditions (H(2)O(2,o) = 30 mM, pH(o) = 6.0, DMP(o)= 100 mg L(-1)). Inhibition of oxygen uptake rate by activated sludge (ISO 8192) was evaluated as a tool for assessing the acute toxicity of untreated and H(2)O(2)/UV-C treated DMP. According to the results obtained in this work, the use of the H(2)O(2)/UV-C process is recommended to achieve a complete DMP oxidation and high mineralization degree of aqueous solution of DMP.


Subject(s)
Endocrine Disruptors/chemistry , Hydrogen Peroxide/chemistry , Phthalic Acids/chemistry , Ultraviolet Rays , Molecular Structure , Oxidation-Reduction , Sewage/analysis
18.
J Hazard Mater ; 164(2-3): 1586-94, 2009 May 30.
Article in English | MEDLINE | ID: mdl-18849115

ABSTRACT

Reactive dyebath effluents are ideal candidates for electrocoagulation due to their intensive color, medium strength, recalcitrant COD and high electrolyte (NaCl) content. The present study focused on the treatability of simulated reactive dyebath effluent (COD(o)=300 mg/L; color in terms of absorbance values A(o,436)=0.532 cm(-1), A(o,525)=0.693 cm(-1) and A(o,620)=0.808 cm(-1)) employing electrocoagulation with aluminum and stainless steel electrodes. Optimization of critical operating parameters such as initial pH (pH(o) 3-11), applied current density (J(c)=22-87 mA/cm(2)) and electrolyte type (NaCl or Na(2)SO(4)) improved the overall treatment efficiencies resulting in effective decolorization (99% using stainless steel electrodes after 60 min, 95% using aluminum electrodes after 90 min electrocoagulation) and COD abatement (93% with stainless steel electrodes after 60 min, 86% with aluminum electrodes after 90 min of reaction time). Optimum electrocoagulation conditions were established as pH(o) 5 and J(c)=22 mA/cm(2) for both electrode materials. The COD and color removal efficiencies also depended on the electrolyte type. No in situ, surplus adsorbable organically bound halogens (AOX) formation associated with the use of NaCl as the electrolyte during electrocoagulation was detected. An economical evaluation was also carried out within the frame of the study. It was demonstrated that electrocoagulation of reactive dyebath effluent with aluminum and stainless steel electrodes was a considerably less electrical energy-intensive, alternative treatment method as compared with advanced chemical oxidation techniques.


Subject(s)
Coloring Agents/chemistry , Electrocoagulation/methods , Water Pollutants, Chemical/chemistry , Aluminum , Electrodes , Electrolytes , Hydrogen-Ion Concentration , Stainless Steel , Water Purification/methods
19.
J Hazard Mater ; 165(1-3): 838-45, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19046620

ABSTRACT

In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).


Subject(s)
Electrocoagulation/methods , Electroplating , Industrial Waste/prevention & control , Metals, Heavy/isolation & purification , Electrocoagulation/instrumentation , Electrodes , Hydrogen-Ion Concentration , Kinetics , Stainless Steel , Waste Disposal, Fluid/methods , Water Purification/methods
20.
J Hazard Mater ; 150(1): 166-73, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17945416

ABSTRACT

Treatment of real reactive dyebath effluent comprising of an exhausted reactive dyebath and its sequential rinses with electrocoagulation (EC) using aluminum (Al) and stainless steel (SS) electrodes was investigated. The experimental study focused on the effect of applied current density (22-87 mA/cm(2); at an initial, optimum pH of 5.5) on decolorization and COD removal rates using Al and SS as electrode materials. Results have indicated that the treatment efficiency was enhanced appreciably by increasing the applied current density when Al electrodes were used for EC, whereas no clear correlation existed between current density and removal rates for EC with SS electrodes the treatment efficiency could only be improved when the applied current density was in the range of 33-65 mA/cm(2). It was established that EC with SS electrodes was superior in terms of decolorization kinetics (99-100% color removal after 10-15 min EC at all studied current densities), whereas EC with Al electrodes was more beneficial for COD removal in terms of electrical energy consumption (5 kWh/m(3) wastewater for EC with Al electrodes instead of 9 kWh/m(3) wastewater for EC with SS electrodes).


Subject(s)
Aluminum/chemistry , Coloring Agents/chemistry , Electrolysis/instrumentation , Electrolysis/methods , Stainless Steel/chemistry , Cotton Fiber , Electrochemistry/methods , Electrodes , Electrolysis/economics , Sewage/chemistry , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...