Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 170: 108081, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295475

ABSTRACT

DNA-binding and RNA-binding proteins are essential to an organism's normal life cycle. These proteins have diverse functions in various biological processes. DNA-binding proteins are crucial for DNA replication, transcription, repair, packaging, and gene expression. Likewise, RNA-binding proteins are essential for the post-transcriptional control of RNAs and RNA metabolism. Identifying DNA- and RNA-binding residue is essential for biological research and understanding the pathogenesis of many diseases. However, most DNA-binding and RNA-binding proteins still need to be discovered. This research explored various properties of the protein sequences, such as amino acid composition type, Position-Specific Scoring Matrix (PSSM) values of amino acids, Hidden Markov model (HMM) profiles, physiochemical properties, structural properties, torsion angles, and disorder regions. We utilized a sliding window technique to extract more information from a target residue's neighbors. We proposed an optimized Light Gradient Boosting Machine (LightGBM) method, named DRBpred, to predict DNA-binding and RNA-binding residues from the protein sequence. DRBpred shows an improvement of 112.00 %, 33.33 %, and 6.49 % for the DNA-binding test set compared to the state-of-the-art method. It shows an improvement of 112.50 %, 16.67 %, and 7.46 % for the RNA-binding test set regarding Sensitivity, Mathews Correlation Coefficient (MCC), and AUC metric.


Subject(s)
Algorithms , Machine Learning , Amino Acids/chemistry , Amino Acids/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/genetics , DNA/chemistry , RNA/genetics , RNA/chemistry , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Computational Biology/methods , Databases, Protein
2.
Biology (Basel) ; 12(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37508449

ABSTRACT

Protein molecules show varying degrees of flexibility throughout their three-dimensional structures. The flexibility is determined by the fluctuations in torsion angles, specifically phi (φ) and psi (ψ), which define the protein backbone. These angle fluctuations are derived from variations in backbone torsion angles observed in different models. By analyzing the fluctuations in Cartesian coordinate space, we can understand the structural flexibility of proteins. Predicting torsion angle fluctuations is valuable for determining protein function and structure when these angles act as constraints. In this study, a machine learning method called TAFPred is developed to predict torsion angle fluctuations using protein sequences directly. The method incorporates various features, such as disorder probability, position-specific scoring matrix profiles, secondary structure probabilities, and more. TAFPred, employing an optimized Light Gradient Boosting Machine Regressor (LightGBM), achieved high accuracy with correlation coefficients of 0.746 and 0.737 and mean absolute errors of 0.114 and 0.123 for the φ and ψ angles, respectively. Compared to the state-of-the-art method, TAFPred demonstrated significant improvements of 10.08% in MAE and 24.83% in PCC for the phi angle and 9.93% in MAE, and 22.37% in PCC for the psi angle.

3.
Bioinform Adv ; 3(1): vbad032, 2023.
Article in English | MEDLINE | ID: mdl-37038446

ABSTRACT

Motivation: Biological processes are regulated by underlying genes and their interactions that form gene regulatory networks (GRNs). Dysregulation of these GRNs can cause complex diseases such as cancer, Alzheimer's and diabetes. Hence, accurate GRN inference is critical for elucidating gene function, allowing for the faster identification and prioritization of candidate genes for functional investigation. Several statistical and machine learning-based methods have been developed to infer GRNs based on biological and synthetic datasets. Here, we developed a method named AGRN that infers GRNs by employing an ensemble of machine learning algorithms. Results: From the idea that a single method may not perform well on all datasets, we calculate the gene importance scores using three machine learning methods-random forest, extra tree and support vector regressors. We calculate the importance scores from Shapley Additive Explanations, a recently published method to explain machine learning models. We have found that the importance scores from Shapley values perform better than the traditional importance scoring methods based on almost all the benchmark datasets. We have analyzed the performance of AGRN using the datasets from the DREAM4 and DREAM5 challenges for GRN inference. The proposed method, AGRN-an ensemble machine learning method with Shapley values, outperforms the existing methods both in the DREAM4 and DREAM5 datasets. With improved accuracy, we believe that AGRN inferred GRNs would enhance our mechanistic understanding of biological processes in health and disease. Availabilityand implementation: https://github.com/DuaaAlawad/AGRN. Supplementary information: Supplementary data are available at Bioinformatics online.

4.
Comput Biol Chem ; 91: 107436, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33550156

ABSTRACT

The protein disulfide bond is a covalent bond that forms during post-translational modification by the oxidation of a pair of cysteines. In protein, the disulfide bond is the most frequent covalent link between amino acids after the peptide bond. It plays a significant role in three-dimensional (3D) ab initio protein structure prediction (aiPSP), stabilizing protein conformation, post-translational modification, and protein folding. In aiPSP, the location of disulfide bonds can strongly reduce the conformational space searching by imposing geometrical constraints. Existing experimental techniques for the determination of disulfide bonds are time-consuming and expensive. Thus, developing sequence-based computational methods for disulfide bond prediction becomes indispensable. This study proposed a stacking-based machine learning approach for disulfide bond prediction (diSBPred). Various useful sequence and structure-based features are extracted for effective training, including conservation profile, residue solvent accessibility, torsion angle flexibility, disorder probability, a sequential distance between cysteines, and more. The prediction of disulfide bonds is carried out in two stages: first, individual cysteines are predicted as either bonding or non-bonding; second, the cysteine-pairs are predicted as either bonding or non-bonding by including the results from cysteine bonding prediction as a feature. The examination of the relevance of the features employed in this study and the features utilized in the existing nearest neighbor algorithm (NNA) method shows that the features used in this study improve about 7.39 % in jackknife validation balanced accuracy. Moreover, for individual cysteine bonding prediction and cysteine-pair bonding prediction, diSBPred provides a 10-fold cross-validation balanced accuracy of 82.29 % and 94.20 %, respectively. Altogether, our predictor achieves an improvement of 43.25 % based on balanced accuracy compared to the existing NNA based approach. Thus, diSBPred can be utilized to annotate the cysteine bonding residues of protein sequences whose structures are unknown as well as improve the accuracy of the aiPSP method, which can further aid in experimental studies of the disulfide bond and structure determination.


Subject(s)
Disulfides/chemistry , Proteins/chemistry , Support Vector Machine , Algorithms , Amino Acid Sequence , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...