Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 97(5): 970-983, 2019 03.
Article in English | MEDLINE | ID: mdl-30444549

ABSTRACT

The catalytic activity of mitogen-activated protein kinases (MAPKs) is dynamically modified in plants. Since MAPKs have been shown to play important roles in a wide range of signaling pathways, the ability to monitor MAPK activity in living plant cells would be valuable. Here, we report the development of a genetically encoded MAPK activity sensor for use in Arabidopsis thaliana. The sensor is composed of yellow and blue fluorescent proteins, a phosphopeptide binding domain, a MAPK substrate domain and a flexible linker. Using in vitro testing, we demonstrated that phosphorylation causes an increase in the Förster resonance energy transfer (FRET) efficiency of the sensor. The FRET efficiency can therefore serve as a readout of kinase activity. We also produced transgenic Arabidopsis lines expressing this sensor of MAPK activity (SOMA) and performed live-cell imaging experiments using detached cotyledons. Treatment with NaCl, the synthetic flagellin peptide flg22 and chitin all led to rapid gains in FRET efficiency. Control lines expressing a version of SOMA in which the phosphosite was mutated to an alanine did not show any substantial changes in FRET. We also expressed the sensor in a conditional loss-of-function double-mutant line for the Arabidopsis MAPK genes MPK3 and MPK6. These experiments demonstrated that MPK3/6 are necessary for the NaCl-induced FRET gain of the sensor, while other MAPKs are probably contributing to the chitin and flg22-induced increases in FRET. Taken together, our results suggest that SOMA is able to dynamically report MAPK activity in living plant cells.


Subject(s)
Arabidopsis/physiology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chitin/pharmacology , Cotyledon/enzymology , Cotyledon/genetics , Cotyledon/physiology , Flagellin/pharmacology , Fluorescence Resonance Energy Transfer , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Phosphorylation , Sodium Chloride/pharmacology
2.
Biosens Bioelectron ; 26(1): 55-61, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20541393

ABSTRACT

We have developed three sensitive and specific amino acid sensors based on bacterial periplasmic solute binding proteins. A site-specific amino-terminal transamination reaction provides a useful complement to cysteine chemistry for the covalent modification of biomolecules in this application. We demonstrate this combination to attach two different chromophores to a single biomolecule in two locations. The periplasmic glutamine binding protein from E. coli was modified with a pair of dyes suitable for fluorescence resonance energy transfer, and this conjugate exhibited an l-glutamine dependent optical response. Two periplasmic binding proteins from the thermophilic organism Thermotoga maritima, for arginine and aliphatic amino acids, were modified and evaluated similarly. All three conjugates manifested signal changes mediated by resonant energy transfer upon binding their respective ligands, with nanomolar dissociation constants and stereochemical specificity. This represents a readily generalizable method for construction of reagentless biosensors. The double-labeling strategy was also exploited for the surface attachment of a dye-labeled glutamine binding protein via a biotin-streptavidin interaction.


Subject(s)
Amino Acids/analysis , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Periplasmic Binding Proteins/chemistry , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...