Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38744493

ABSTRACT

Poly- and perfluoroalkyl substances (PFAS) are a prominent class of persistent synthetic compound. The widespread use of these substances in various industrial applications has resulted in their pervasive contamination on a global scale. It is therefore concerning that PFAS have a propensity to accumulate in bodily tissues whereupon they have been linked with a range of adverse health outcomes. Despite this, the true extent of the risk posed by PFAS to humans, domestic animals, and wildlife remains unclear. Addressing these questions requires a multidisciplinary approach, combining the fields of chemistry, biology, and policy to enable meaningful investigation and develop innovative remediation strategies. This article combines the perspectives of chemists, soil scientists, reproductive biologists, and health policy researchers, to contextualise the issue of PFAS contamination and its specific impact on reproductive health. The purpose of this article is to describe the challenges associated with remediating PFAS-contaminated soils and waters and explore the consequences of PFAS contamination on health and reproduction. Furthermore, current actions to promote planetary health and protect ecosystems are presented to instigate positive social change among the scientific community.


Subject(s)
Animals, Wild , Environmental Pollutants , Fluorocarbons , Reproductive Health , Animals , Humans , Fluorocarbons/toxicity , Fluorocarbons/adverse effects , Fluorocarbons/analysis , Livestock , Reproduction/drug effects , Environmental Pollution/adverse effects , Environmental Pollution/analysis , Environmental Exposure/adverse effects
2.
Environ Pollut ; : 124234, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815892

ABSTRACT

Per- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, yet the understanding of factors that control their leaching and release from contaminated soils remains limited. This study aimed to investigate the impact of dissolved organic carbon (DOC) on the release of PFASs-specifically, perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA)-from soils contaminated by aqueous film forming foam (AFFF)-. Batch aqueous leaching experiments were conducted on AFFF-contaminated soils under alkaline solution conditions (pH 9.5, 10.5, and 12) as it enhances leaching of both PFAS and DOC. Leaching of PFOS was significantly increased under alkaline conditions. Although the leaching of PFAS generally increased with pH, PFOS appeared to be more retained under the very alkaline pH conditions used in this study. At the same solution pH, leaching of PFOS and DOC was less in Ca(OH)2 than in NaOH. The retention of PFOS under these conditions may be attributable to the shielding of the negative charge of the soil components and colloids (e.g., DOC and clay minerals) in the leachates and/or the screening of negative charges on head groups of PFOS due to the high concentration of divalent cations. Solution chemistry affected desorption of PFOS more than PFHxS and PFOA. The study highlights that the influence of DOC on PFAS leaching and transport can be very complex, and depends on leachate chemistry (e.g., pH and cation type), PFAS chemistry, the magnitude of PFAS contamination and factors that influence the solid:liquid partitioning of organic carbon in soil.

3.
Small ; 19(45): e2302692, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37469019

ABSTRACT

This study presents a novel approach to decontaminate ferrocyanide-contaminated wastewater. The work effectively demonstrates the use of bimetallic Mo/Zr-UiO-66 as a super-adsorbent for rapid sequestration of Prussian blue, a frequently found iron complex in cyanide-contaminated soils/groundwater. The exceptional performance of Mo/Zr-UiO-66 is attributed to the insertion of secondary metallic sites, which deliver synergistic effects, benefiting the inherent qualities of the framework. Moreover, to extend the industrial applications of metal-organic frameworks (MOFs) in real-world scenarios, an approach is delivered to structure the nanocrystalline powders into MOF-based macrostructures. The work demonstrates an interfacial process to develop continuous MOF nanostructures on ordinary laboratory-grade filter papers. The novelty of the work lies in the development of robust free-standing filtration materials to purify PB dye-contaminated water. Additionally, the work embraces a circular economy concept to address problems related to resource scarcity, excessive waste production, and maintenance of economic benefits. Consequently, the PB dye-loaded adsorbent waste is re-employed for the adsorption of heavy metals (Pb2+ and Cd2+ ). Simultaneously, the study aims to address the problems related to the real-time handling of powdered adsorbents, and the generation of ecologically harmful secondary waste, thereby, progressing toward a more sustainable system.

4.
Sci Total Environ ; 875: 162653, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36894096

ABSTRACT

Removal of per- and polyfluoroalkyl substances (PFASs) from water or their immobilization in soil using carbon-based sorbents is one of the cost-effective techniques. Considering the variety of carbon-based sorbents, identifying the key sorbent properties responsible for PFASs removal from solution or immobilization in the soil can assist in the selection of the best sorbents for management of contaminated sites. This study evaluated the performance of 28 carbon-based sorbents including granular and powdered activated carbon (GAC and PAC), mixed mode carbon mineral material, biochars, and graphene-based materials (GNBs). The sorbents were characterized for a range of physical and chemical properties. PFASs' sorption from an AFFF-spiked solution was examined via a batch experiment, while their ability to immobilize PFASs in soil was tested following mixing, incubation and extraction using the Australian Standard Leaching Procedure. Both soil and solution were treated with 1 % w/w sorbents. Comparing different carbon-based materials, PAC, mixed mode carbon mineral material and GAC were the most effective in sorbing PFASs in both solution and soil. Among the different physical characteristics measured, the sorption of long-chain and more hydrophobic PFASs in both soil and solution was best correlated with sorbent surface area measured using methylene blue, which highlights the importance of mesopores in PFASs sorption. Iodine number was found to be a better indicator of the sorption of short-chain and more hydrophilic PFASs from solution but was found to be poorly correlated with PFASs immobilization in soil for activated carbons. Sorbents with a net positive charge performed better than those with a net negative charge, or no net charge. This study showed that surface area measured by methylene blue and surface charge are the best indicators of sorbent performance with respect to sorption/reducing leaching of PFASs. These properties may be helpful in selecting sorbents for PFASs remediation of soils/waters.

5.
Environ Pollut ; 323: 121249, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36764376

ABSTRACT

Immobilisation/stabilisation is one of the most developed and studied approaches for treating soils contaminated with per- and poly-fluoroalkyl substances (PFAS). However, its application has been inhibited by insufficient understanding of the effectiveness of added soil sorbents over time. Herein, we present results on the effectiveness of select carbon-based sorbents, over 4 years (longevity) and multiple laboratory leaching conditions (durability). Standard batch leaching tests simulating aggressive, worst-case scenario conditions for leaching (i.e., shaking for 24-48 h at high liquid/solid ratios) were employed to test longevity and durability of stabilisation in clay-loam and sandy-loam soils historically contaminated with PFAS (2 and 14 mg/kg ∑28 PFAS). The different sorbents, which were applied at 1-6% (w/w), reduced leaching of PFAS from the soils to varying degrees. Among the 5 sorbents tested, initial assessments completed 1 week after treatment revealed that 2 powdered activated carbon (PAC) sorbents and 1 biochar were able to reduce leaching of PFAS in the soil by at least 95%. Four years after treatment, the performance of the PAC sorbents did not significantly change, whilst colloidal AC improved and was able to reduce leaching of PFAS by at least 94%. The AC-treated soils also appeared to be durable and achieved at least 95% reduction in PFAS leaching under repetitive leaching events (5 times extraction) and with minimal effect of pH (pH 4-10.5). In contrast, the biochars were affected by aging and were at least 22% less effective in reducing PFAS leaching across a range of leaching conditions. Sorbent performance was generally consistent with the sorbent's physical and chemical characteristics. Overall, the AC sorbents used in this study appeared to be better than the biochars in stabilising PFAS in the long term.


Subject(s)
Fluorocarbons , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Charcoal/chemistry
6.
J Hazard Mater ; 445: 130441, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36462244

ABSTRACT

This paper aims to describe the performance of a soil washing plant (SWP) for remediating a per- and poly-fluoroalkyl substances (PFASs)-contaminated soil with a high clay content (61%). The SWP used both physical and chemical processes; fractionation of the soil particles by size and partitioning of PFASs into the aqueous phase to remove PFASs from the soil. Contaminated water was treated in series with granulated activated carbon (GAC) and ion-exchange resin and reused within the SWP. Approximately 2200 t (dry weight) of PFAS-contaminated soil was treated in 25 batches of 90 t each, with a throughput of approximately 11 t soil/hr. Efficiency of the SWP was measured by observed decreases in total and leachable concentrations of PFASs in the soil. Average removal efficiencies (RE) were up to 97.1% for perfluorocarboxylic acids and 94.9% for perfluorosulfonic acids. REs varied among different PFASs depending on their chemistry (functional head group, carbon chain length) and were independent of the total PFAS concentrations in each soil batch. Mass balance analysis found approximately 90% of the PFAS mass in the soil was transferred to the wash solution and > 99.9% of the PFAS mass in the wash solution was transferred onto the GAC without any breakthrough.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Soil/chemistry , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Clay , Water Pollution/analysis , Charcoal , Plants
7.
Environ Sci Technol ; 56(23): 16857-16865, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36354276

ABSTRACT

The mobilization and transport of per- and poly-fluoroalkyl substances (PFASs) via surface runoff (runoff) from aqueous film-forming foam (AFFF)-contaminated soils during rainfall, flooding, or irrigation has not been thoroughly evaluated, and the effectiveness of carbonaceous sorbents in limiting PFASs in runoff is similarly unquantified. Here, laboratory-scale rainfall simulations evaluate PFAS losses in runoff and in leaching to groundwater (leachate) from AFFF-contaminated soils varying in texture, PFAS composition and concentration, and remediation treatment. Leaching dominated PFAS losses in soils with a concentration of ∑PFAS = 0.2-2 mg/kg. However, with higher soil PFAS concentrations (∑PFAS = 31 mg/kg), leachate volumes were negligible and runoff dominated losses. The concentration and variety of PFASs were far greater in leachates regardless of the initial concentrations in soil. Losses of PFASs were dependent on the C-chain length for leachates and more on the initial concentration in soil for runoff. Suspended materials did not meaningfully contribute to runoff losses. While concentrations of most PFASs declined significantly after the first rainfall event, desorption and transport in both runoff and leachates persisted over several rainfall events. Finally, results showed that sorption to AC mostly occurred during, not prior to, rainfall events and that 1% w/w AC substantially reduced losses in runoff and leachates from all soils.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Soil , Environmental Pollution , Water , Aerosols
8.
Environ Sci Technol ; 56(14): 10030-10041, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35763608

ABSTRACT

This study investigated the mobilization of a wide range of per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foams (AFFFs) in water-saturated soils through one-dimensional (1-D) column experiments with a view to assessing the feasibility of their remediation by soil desorption and washing. Results indicated that sorption/desorption of most of the shorter-carbon-chain PFASs (C ≤ 6) in soil reached greater than 99% rapidly─after approximately two pore volumes (PVs) and were well predicted by an equilibrium transport model, indicating that they will be readily removed by soil washing technologies. In contrast, the equilibrium model failed to predict the mobilization of longer-chain PFASs (C ≥ 7), indicating the presence of nonequilibrium sorption/desorption (confirmed by a flow interruption experiment). The actual time taken to attain 99% sorption/desorption was up to 5 times longer than predicted by the equilibrium model (e.g., ∼62 PVs versus ∼12 PVs predicted for perfluorooctane sulfonate (PFOS) in loamy sand). The increasing contribution of hydrophobic interactions over the electrostatic interactions is suggested as the main driving factor of the nonequilibrium processes. The inverse linear relationship (R2 = 0.6, p < 0.0001) between the nonequilibrium mass transfer rate coefficient and the Freundlich sorption coefficient could potentially be a useful means for preliminary evaluation of potential nonequilibrium sorption/desorption of PFASs in soils.


Subject(s)
Fluorocarbons , Soil Pollutants , Water Pollutants, Chemical , Fluorocarbons/analysis , Soil/chemistry , Water , Water Pollutants, Chemical/analysis
9.
Environ Sci Technol ; 56(1): 368-378, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34932318

ABSTRACT

Soil contaminated with aqueous film-forming foams (AFFFs) containing per- and polyfluoroalkyl substances (PFASs) at firefighting training sites has become a major concern worldwide. To date, most studies have focused on assessing soil-water partitioning behavior of PFASs and the key factors that can affect their sorption, whereas PFASs leaching from contaminated soils have not yet been widely investigated. This study evaluated the leaching and desorption of a wide range of PFASs from twelve contaminated soils using the Australian Standard Leaching Procedure (ASLP), the U.S. EPA Multiple Extraction Procedure (MEP), and Leaching Environmental Assessment Framework (LEAF). All three leaching tests provided a similar assessment of PFAS leaching behavior. Leaching of PFASs from soils was related to C-chain lengths and their functional head groups. While short-chain (CF2 ≤ 6) PFASs were easily desorbed and leached, long-chain PFASs were more difficult to desorb. PFASs with a carboxylate head group were leached more readily and to a greater extent than those with a sulfonate or sulfonamide head group. Leaching of long-chain PFASs was pH-dependent where leaching increased at high pH, while leaching of short-chain PFASs was less sensitive to pH. Comparing different leaching tests showed that the results using the alkaline ASLP were similar to the cumulative MEP data and the former might be more practical for routine use than the MEP. No single soil property was adequately able to describe PFAS leaching from the soils. Overall, the PFAS chemical structure appeared to have a greater effect on PFAS leaching from soil than soil physicochemical properties.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Australia , Environmental Pollution , Fluorocarbons/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis
10.
Sci Total Environ ; 766: 144718, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33536123

ABSTRACT

Persistent use of aqueous film-forming foams containing per- and polyfluoroalkyl substances (PFASs) in firefighting has led to severe contamination of soil and aquifers at training sites, which makes remediation of such sites a necessity. We investigated the persistence of binding of PFASs to a mixed-mode remediation agent including repeated leaching, and the effects of competing ions and temperature extremes. The sorbent (RemBind®) was added to PFAS-contaminated soils and standard leaching procedures - the U.S. EPA Multiple Extraction Procedure and the U.S. EPA Leaching Environmental Assessment Framework were applied to quantify desorption of PFASs from remediated and unremediated soils. Possible desorption by competing anions such as orthophosphate (H2PO4-) and humic acid (HA) were assessed, and effects of temperature extremes and ionic strength were also investigated. These are the main environmental factors that could potentially affect desorption of PFASs over time at a typical site. Desorption of PFASs from unremediated soils was related to C-chain length with short-chain PFASs easily desorbed and leached. PFASs with carboxylic head groups leached faster than those with a sulfonic acid head group. The sorbent retained PFASs strongly and reduced desorption and leaching from remediated soils by 92 to 99.9%. There were no detrimental effects on desorption of PFASs from temperature extremes or changes in ionic strength. In remediated soils, effects of competing ions were also absent or minimal. However, in unremediated soils increasing concentrations of orthophosphate and HA increased leaching of some long-chain PFASs. While short-term laboratory desorption experiments cannot exactly mimic long-term field conditions, these results provide site owners and regulatory authorities with a high level of confidence that PFASs binding by RemBind® is predicted to be persistent in the long term. However, to give the greatest level of confidence, these simulations should be validated under field conditions for at least several years.

11.
Sci Total Environ ; 766: 144857, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33446338

ABSTRACT

The global problem of groundwater being contaminated with per- and polyfluoroalkyl substances (PFASs) originating from highly contaminated soils has created a need to remediate these locations. In situ immobilisation of PFASs in soil by applying sorbents is often a preferred low-cost technique to reduce their mobility and leaching to groundwater, but the long-term efficacy of sorbents has not yet been investigated. In this study, the longevity of remediation of two different soils by two common sorbents (RemBind®, and pulverized activated carbon, Filtrasorb™ 400) was assessed. Regulatory agencies often rely on standardised leaching procedures to assess the risk of contaminant mobility in soils. Hence, the Australian Standard Leaching Procedure and the U.S. EPA Leaching Environmental Assessment Framework were applied to quantify the desorption/leaching of a wide range of PFASs from unremediated and remediated soils under a range of pH conditions (pH 2 to 12). Ease of desorption and subsequent leaching from the unremediated soils was related to C-chain length; while short-chain PFASs were easily desorbed and leached, long-chain PFASs were more difficult to desorb. Desorption of long-chain PFASs was also pH dependent in unremediated soils, with desorption being greater at high pH. Both sorbents retained PFASs strongly in the remediated soils (> 99% for most PFASs) across a broad range of pH conditions, with only small differences between the sorbents in terms of efficacy. Both sorbents showed better retention of PFASs under low pH conditions. Remediation of PFAS-contaminated soils with these sorbents could be considered robust and durable in terms of changes in soil pH, with little risk of subsequent PFASs desorption under normal environmental pH conditions. Ultimately, to give regulators and site owners the greatest level of confidence that immobilisation is stable for the longer term, it should also be tested under repeated cycles of leaching and under different conditions.

12.
Environ Sci Technol ; 54(24): 15883-15892, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33249833

ABSTRACT

The aim of this study was to assess the soil-water partitioning behavior of a wider range of per- and polyfluoroalkyl substances (PFASs) onto soils covering diverse soil properties. The PFASs studied include perfluoroalkyl carboxylates (PFCAs), perfluoroalkane sulfonates (PFSAs), fluorotelomer sulfonates (FTSs), nonionic perfluoroalkane sulfonamides (FASAs), cyclic PFAS (PFEtCHxS), per- and polyfluoroalkyl ether acids (GenX, ADONA, 9Cl-PF3ONS), and three aqueous film-forming foam (AFFF)-related zwitterionic PFASs (AmPr-FHxSA, TAmPr-FHxSA, 6:2 FTSA-PrB). Soil-water partitioning coefficients (log Kd values) of the PFASs ranged from less than zero to approximately three, were chain-length-dependent, and were significantly linearly related to molecular weight (MW) for PFASs with MW > 350 g/mol (R2 = 0.94, p < 0.0001). Across all soils, the Kd values of all short-chain PFASs (≤5 -CF2- moieties) were similar and varied less (<0.5 log units) compared to long-chain PFASs (>0.5 to 1.5  log units) and zwitterions AmPr- and TAmPr-FHxSA (∼1.5 to 2 log units). Multiple soil properties described sorption of PFASs better than any single property. The effects of soil properties on sorption were different for anionic, nonionic, and zwitterionic PFASs. Solution pH could change both PFAS speciation and soil chemistry affecting surface complexation and electrostatic processes. The Kd values of all PFASs increased when solution pH decreased from approximately eight to three. Short-chain PFASs were less sensitive to solution pH than long-chain PFASs. The results indicate the complex interactions of PFASs with soil surfaces and the need to consider both PFAS type and soil properties to describe mobility in the environment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Hydrogen-Ion Concentration , Soil , Water , Water Pollutants, Chemical/analysis
13.
ACS Omega ; 4(22): 19787-19798, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31788611

ABSTRACT

The synthesis of graphene materials with multiple surface chemistries and functionalities is critical for further improving their properties and broadening their emerging applications. We present a simple chemical approach to obtain bulk quantities of multifunctionalized reduced graphene oxide (rGO) that combines chemical doping and functionalization using the thiol-ene click reaction. Controllable modulation of chemical multifunctionality was achieved by simultaneous nitrogen doping and gradual chemical reduction of graphene oxide (GO) using ammonia and hydrazine, followed by covalent attachment of amino-terminated thiol molecules using the thiol-ene click reaction. A series of N-doped rGO (N-rGO) precursors with different levels of oxygen groups were synthesized by adjusting the amount of reducing agent (hydrazine), followed by subsequent covalent attachment of cysteamine via the thermal thiol-ene click reaction to yield different ratios of mixed functional groups including N (pyrrolic N, graphitic N, and aminic N), S (thioether S, thiophene S, and S oxides), and O (hydroxyl O, carbonyl O, and carboxyl O) on the reduced GO surface. Detailed XPS analysis confirmed the disappearance of unstable pyridinic N in cys-N-rGO and the reduction degree threshold of N-rGO for effective cysteamine modification to take place. Our study establishes a strong correlation between different reduction degrees of N-rGO with several existing oxygen functional groups and addition of new tunable functionalities including covalently attached nitrogen (amino) and sulfur (C-S-C, C=S, and S-O). This simple and versatile approach provides a valuable contribution for practical designing and synthesis of a broad range of functionalized graphene materials with tailorable functionalities, doping levels, and interfacial properties for potential applications such as polymer composites, supercapacitors, electrocatalysis, adsorption, and sensors.

14.
ACS Appl Mater Interfaces ; 11(6): 6350-6362, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30507147

ABSTRACT

Engineering of multifunctional binding chemistry on graphene composites using thiol-ene click reaction for selective and highly efficient adsorption of mercury(II) is demonstrated. Graphene oxide (GO) is used as an initial material for covalent attachment of cysteamine molecules by thiol-ene click reaction on C═C groups to achieve a partially reduced graphene surface with multiple binding chemistry such as O, S, and N. Batch adsorption studies showed remarkable adsorption rate with only 1 mg L-1 dosage of adsorbent used to remove 95% Hg (II) (∼1.5 mg L-1) within 90 min. The high adsorption capacity of 169 ± 19 mg g-1, high selectivity toward Hg in the presence of 30 times higher concentration of competing ions (Cd, Cu, Pb) and high regeneration ability (>97%) for five consecutive adsorption-desorption cycles were achieved. Comparative study with commercial activated carbon using spiked Hg (II) river water confirmed the high performance and potential of this adsorbent for real mercury remediation of environmental and drinking waters.

15.
ACS Appl Mater Interfaces ; 9(49): 43325-43335, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29160685

ABSTRACT

The environmental problems and low efficiency associated with conventional fertilizers provides an impetus to develop advanced fertilizers with slower release and better performances. Here, we report of development of a new carrier platform based on graphene oxide (GO) sheets that can provide a high loading of plant micronutrients with controllable slow release. To prove this concept, two micronutrients, zinc (Zn) and copper (Cu), were used to load on GO sheets and hence formulate GO-based micronutrients fertilizer. The chemical composition and successful loading of both nutrients on GO sheets were confirmed by X-ray photoelectron spectroscopy, thermogravimetric analysis, and X-ray diffraction (XRD). The prepared Zn-graphene oxide (Zn-GO) and Cu-graphene oxide (Cu-GO) fertilizers showed a biphasic dissolution behavior compared to that of commercial zinc sulfate and copper sulfate fertilizer granules, displaying desirable fast and slow micronutrient release. A visualization method and chemical analysis were used to assess the release and diffusion of Cu and Zn in soil from GO-based fertilizers compared with commercial soluble fertilizers to demonstrate the advantages of GO carriers and show their capability to be used as a generic platform for macro- and micronutrients delivery. A pot trial demonstrated that Zn and Cu uptake by wheat was higher when using GO-based fertilizers compared to that when using standard zinc or copper salts. This is the first report on the agronomic performance of GO-based slow-release fertilizer.


Subject(s)
Micronutrients/chemistry , Fertilizers , Graphite , Soil , Zinc
16.
ACS Appl Mater Interfaces ; 9(11): 10160-10168, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28244736

ABSTRACT

To address high fire risks of flamable cellulosic materials, that can trigger easy combustion, flame propagation, and release of toxic gases, we report a new fire-retardant approach using synergetic actions combining unique properties of reduced graphene oxide (rGO) and hydrated-sodium metaborates (SMB). The single-step treatment of cellulosic materials by a composite suspension of rGO/SMB was developed to create a barrier layer on sawdust surface providing highly effective fire retardant protection with multiple modes of action. These performances are designed considering synergy between properties of hydrated-SMB crystals working as chemical heat-sink to slow down the thermal degradation of the cellulosic particles and gas impermeable rGO layers that prevents access of oxygen and the release of toxic volatiles. The rGO outer layer also creates a thermal and physical barrier by donating carbon between the flame and unburnt wood particles. The fire-retardant performance of developed graphene-borate composite and mechanism of fire protection are demonstrated by testing of different forms of cellulosic materials such as pine sawdust, particle-board, and fiber-based structures. Results revealed their outstanding self-extinguishing behavior with significant resistance to release of toxic and flammable volatiles suggesting rGO/SMB to be suitable alternative to the conventional toxic halogenated flame-retardant materials.

17.
ACS Appl Mater Interfaces ; 7(22): 11815-23, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25835089

ABSTRACT

A simple synthetic approach for the preparation of graphene-diatom silica composites in the form of self-assembled aerogels with three-dimensional networks from natural graphite and diatomite rocks is demonstrated for the first time. Their adsorption performance for the removal of mercury from water was studied as a function of contact time, solution pH, and mercury concentration to optimize the reaction conditions. The adsorption isotherm of mercury fitted well with the Langmuir model, representing a very high adsorption capacity of >500 mg of mercury/g of adsorbent. The prepared aerogels exhibited outstanding adsorption performance for the removal of mercury from water, which is significant for environmental applications.

18.
ACS Appl Mater Interfaces ; 7(18): 9758-66, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25871444

ABSTRACT

Arsenic (As) is the world's most hazardous chemical found in drinking water of many countries; therefore, there is an urgent need for the development of low-cost adsorbents for its removal. Here, we report a highly versatile and synthetic route for the preparation of a three-dimensional (3D) graphene-iron oxide nanoparticle aerogel composite for the efficient removal of As from contaminated water. This unique three-dimensional (3D) interconnected network was prepared from natural graphite rocks with a simple reaction, without the use of harsh chemicals, which combines with the exfoliation of graphene oxide (GO) sheets via the reduction of ferrous ion to form a graphene aerogel composite decorated with iron oxide nanoparticles. The prepared adsorbent showed outstanding absorption performance for the removal of As from contaminated water, because of its high surface-to-volume ratio and characteristic pore network in the 3D architecture. The performed case study using real drinking water contaminated with As under batch conditions showed successful removal of arsenic to the concentration recommended by the World Health Organisation (WHO).

SELECTION OF CITATIONS
SEARCH DETAIL
...