Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Colloid Interface Sci ; 308: 102751, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36027672

ABSTRACT

This work compares four different image processing algorithms for the analysis of image data obtained during the Multiscale Boiling Experiment of ESA, executed on-board the International Space Station. Two separate experimental campaigns have been performed in 2019 and 2020, aiming to investigate boiling phenomena in microgravity, with and without the presence of shear flow and electric field. A heated substrate, at the bottom of the test cell, creates a temperature profile across the liquid bulk above it. A laser beam hits a designated microcavity at the middle of the substrate, to initiate nucleation of a single, isolated bubble. In the presence of shear flow or electric field forces, the bubble slides or detaches respectively, leaving the cavity free for the nucleation and growth of a new bubble. The growth of such a bubble within the prescribed temperature profile is studied for varying experimental conditions (i.e. pressure, heat flux, subcooling temperature) by capturing high speed, black and white video images. The presence of light reflections at random locations around the bubble contour vary with bubble size and population. This, combined with the refraction induced optical distortion of vertical image dimension close to the heater, make the accurate detection of bubbles contour a real challenge. Four research teams, namely the University of Pisa (UNIPI), the Institute of Fluid Mechanics of Toulouse (IMFT), the joint group of Aix Marseille University (AMU) and Kutateladze Institute of Thermophysics (IT), and the joined group of Aristotle University of Thessaloniki (AUTH), Technical University of Darmstadt (TUD) and Foundation of Research and Technology in Crete (FORTH), developed separate specialized algorithms to: a) detect bubble edges and b) use these edges to calculate basic bubble geometrical features, such as contact line diameter, bubble diameter and contact angles. These four different approaches diverge in complexity and concept. In the absence of reference measurements at microgravity conditions, measurements efficiency is evaluated based on the comparison of the estimated bubble geometrical features along with pertinent physical arguments. Results show that the efficiency of each approach varies with the nature of measurement. The studied benchmark dataset is published allowing other research groups to test further their own image processing algorithms.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066305, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23005204

ABSTRACT

The problem of a two-layer system consisting of a horizontal liquid layer in contact with its own vapor is considered. The liquid layer is bounded by a rigid wall from below, and phase change can occur at the interface. The flow of the vapor phase is driven by a constant pressure gradient in the streamwise direction. We have taken into account the effects of buoyancy, thermocapillarity, evaporation, and the dynamics of the vapor phase. A full linear stability analysis is performed using a Chebyshev spectral method. The influences of evaporation effect and the interfacial shear on the Rayleigh instability and the Marangoni instability have been studied. The results show that both the evaporation and the interfacial shear play important roles in the stability of the system.


Subject(s)
Gases/chemistry , Models, Chemical , Rheology/methods , Solutions/chemistry , Computer Simulation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...