Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 458, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33432094

ABSTRACT

The amino acid L-methionine is an essential amino acid and is commonly used as a feed supplement in terrestrial animals. It is less suitable for marine organisms because it is readily excreted. It is also highly water soluble and this results in loss of the feed and eutrophication of the water. To address these problems, the dipeptide DL-methionyl-DL-methionine (trade name: AQUAVI Met-Met) has been developed as a dedicated methionine source for aquaculture. The commercial product is a mixture of a racemic crystal form of D-methionyl-D-methionine/L-methionyl-L-methionine and a racemic crystal form of D-methionyl-L-methionine/L-methionyl-D-methionine. In this work, we have computationally, structurally, spectroscopically and by electron microscopy characterised these materials. The microscopy and spectroscopy demonstrate that there is no interaction between the DD-LL and DL-LD racemates on any length scale from the macroscopic to the nanoscale.

2.
Eur J Pharm Sci ; 123: 268-276, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30048801

ABSTRACT

Conjugation of small molecule agonists of Toll-like receptor 7 (TLR7) to proteins, lipids, or polymers is known to modulate potency, and the physical form or formulation of these conjugates is likely to have a major effect on their immunostimulatory activity. Here, we studied the effect of formulation on potency of a 1,2­di­(9Z­octadecenoyl)­sn­glycero­3­phosphoethanolamine (DOPE) conjugated TLR7 agonist (DOPE-TLR7a) alongside assessing physical form using Dynamic Light Scattering (DLS), Nanosight Particle Tracking (NTA) analysis and Small Angle X-ray Scattering (SAXS). A very high potency of DOPE-TLR7a conjugate (EC50 around 9 nM) was observed either when prepared by direct dilution from DMSO or when formulated into 400-700 nm large multilamella liposomes containing dimethyldioctadecylammonium bromide salt (DDA) and DOPE. When prepared by dissolution in DMSO followed by dilution in aqueous culture medium, 93 ±â€¯5 nm nanoparticles were formed. Without dilution from solution in DMSO, no nanoparticles were observed and no immunostimulatory activity could be detected without this formulation step. SAXS analysis of the conjugate after DMSO dissolution/water dilution revealed a lamellar order with a layer spacing of 68.7 Å, which correlates with arrangement in groups of 3 bilayers. The addition of another immunostimulatory glycolipid, trehalose­6,6­dibehenate (TDB), to DOPE:DDA liposomes gave no further increase in immunostimulatory activity beyond that provided by incorporating DOPE-TLR7a. Given the importance of nanoparticle or liposomal formulation for activity, we conclude that the major mechanism for increased potency when TLR7 agonists are conjugated to macromolecules is through alteration of physical form.


Subject(s)
Adjuvants, Immunologic/pharmacology , Benzaldehydes/pharmacology , Macrophages/drug effects , Membrane Glycoproteins/agonists , Nanoparticles , Phosphatidylethanolamines/chemistry , Purines/pharmacology , Toll-Like Receptor 7/agonists , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/metabolism , Animals , Benzaldehydes/chemistry , Benzaldehydes/metabolism , Dose-Response Relationship, Drug , Drug Compounding , Liposomes , Macrophages/immunology , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Mice , Purines/chemistry , Purines/metabolism , RAW 264.7 Cells , Structure-Activity Relationship , Toll-Like Receptor 7/metabolism
3.
J Pharm Sci ; 107(8): 2042-2047, 2018 08.
Article in English | MEDLINE | ID: mdl-29679705

ABSTRACT

Crystal structure determination from powder diffraction data (SDPD) using the DASH software package is evaluated for data recorded using transmission capillary, transmission flat plate, and reflection flat plate geometries on a selection of pharmaceutical compounds. We show that transmission capillary geometry remains the best option when crystal structure determination is the primary consideration and, as expected, reflection flat plate geometry is not recommended for SDPD because of preferred orientation effects. However, the quality of crystal structures obtained from transmission plate instruments can be excellent, and the convenience factor for sample preparation, throughput, and retrieval is higher than that of transmission capillary instruments. Indeed, it is possible to solve crystal structures within an hour of a polycrystalline sample arriving in the laboratory, which has clear implications for making small-molecule crystal structures more routinely available to the practicing laboratory medicinal chemist. With appropriate modifications to crystal structure determination software, it can be imagined that SDPD could become a rapid turn-around walk-up analytical service in high-throughput chemical environments.


Subject(s)
Crystallography, X-Ray/methods , Pharmaceutical Preparations/chemistry , Adrenergic beta-Antagonists/chemistry , Anti-Bacterial Agents/chemistry , Carvedilol/chemistry , Cefadroxil/chemistry , Models, Molecular , Powder Diffraction/methods , Software , X-Ray Diffraction/methods
4.
Sci Rep ; 7(1): 5738, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720875

ABSTRACT

The constant increase in cardiovascular disease rate coupled with significant drawbacks of existing therapies emphasise the necessity to improve therapeutic strategies. Natural flavonoids exert innumerable pharmacological effects in humans. Here, we demonstrate the effects of chrysin, a natural flavonoid found largely in honey and passionflower on the modulation of platelet function, haemostasis and thrombosis. Chrysin displayed significant inhibitory effects on isolated platelets, however, its activity was substantially reduced under physiological conditions. In order to increase the efficacy of chrysin, a sulfur derivative (thio-chrysin), and ruthenium-complexes (Ru-chrysin and Ru-thio-chrysin) were synthesised and their effects on the modulation of platelet function were evaluated. Indeed, Ru-thio-chrysin displayed a 4-fold greater inhibition of platelet function and thrombus formation in vitro than chrysin under physiologically relevant conditions such as in platelet-rich plasma and whole blood. Notably, Ru-thio-chrysin exhibited similar efficacy to chrysin in the modulation of haemostasis in mice. Increased bioavailability and cell permeability of Ru-thio-chrysin compared to chrysin were found to be the basis for its enhanced activity. Together, these results demonstrate that Ru-thio-coupled natural compounds such as chrysin may serve as promising templates for the development of novel anti-thrombotic agents.


Subject(s)
Blood Platelets/drug effects , Fibrinolytic Agents/pharmacology , Flavonoids/pharmacology , Hemostasis/drug effects , Platelet Activation/drug effects , Ruthenium/pharmacology , Thrombosis/prevention & control , Animals , Biological Availability , Disease Models, Animal , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/chemical synthesis , Fibrinolytic Agents/pharmacokinetics , Flavonoids/administration & dosage , Flavonoids/pharmacokinetics , Humans , Mice , Ruthenium/administration & dosage , Ruthenium/pharmacokinetics
5.
Acta Crystallogr C ; 69(Pt 11): 1251-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24192168

ABSTRACT

Solving pharmaceutical crystal structures from powder diffraction data is discussed in terms of the methodologies that have been applied and the complexity of the structures that have been solved. The principles underlying these methodologies are summarized and representative examples of polymorph, solvate, salt and cocrystal structure solutions are provided, together with examples of some particularly challenging structure determinations.


Subject(s)
Powder Diffraction , Chemistry, Pharmaceutical , Crystallography, X-Ray , Models, Molecular , Solutions/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...