Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512463

ABSTRACT

This research explores the welding process of a high-entropy CrMnFeCoNi alloy with iron, unraveling the intricate chemical compositions that materialize in distinct regions of the weld joint. A mid-wave infrared thermal camera was deployed to monitor the cooling sequences during welding. A thorough analysis of the metallographic sample from the weld joint, along with measurements taken using a nano-hardness indenter, provided insights into the hardness and Young's modulus. The element distribution across the weld joint was assessed using a scanning electron microscope equipped with an EDS spectrometer. Advanced techniques such as X-ray diffraction and Mössbauer spectroscopy underscored the prevalence of the martensitic phase within the weld joint, accompanied by the presence of bcc (iron) and fcc phases. In contrast, Young's modulus in the base metal areas displayed typical values for a high-entropy alloy (202 GPa) and iron (204 GPa). The weld joint material displayed substantial chemical heterogeneity, leading to noticeable concentration gradients of individual elements. The higher hardness noted in the weld (up to 420 HV), when compared to the base metal regions (up to 290 HV for CrMnFeCoNi alloy and approximately 150 HV for iron), can be ascribed to the dominance of the martensitic phase. These findings provide valuable insights for scenarios involving diverse welded joints containing high-entropy alloys, contributing to our understanding of materials engineering.

2.
Materials (Basel) ; 14(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916233

ABSTRACT

The aim of this work was to investigate the features of microstructure, phase composition, mechanical properties, and thermal stability of the two-component melt-spun Ni55Fe20Cu5P10B10 alloy. The development of the microstructure after heating to elevated temperatures was studied using scanning electron microscope and in situ high temperature X-ray diffraction. The high-temperature behavior of the two-component melt-spun Ni55Fe20Cu5P10B10 alloy and Ni40Fe40B20, Ni70Cu10P20, and Ni55Fe20Cu5P10B10 alloys melt-spun from single-chamber crucible was investigated using differential scanning calorymetry at different heating rates and by dynamic mechanical thermal analysis. The results show that band-like microstructure of the composite alloy is stable even at 800 K, although coarsening of bands forming the microstructure of the ribbons is observed above 550 K. Plastic deformation is observed in the composite previously heated to temperatures of 600-650 K. The properties of the composite alloy are generally different than the properties obtained for the melt-spun alloy of the same average nominal composition produced traditionally. Additionally, the mechanical and the thermal properties in this composite are inherited from the amorphous state of alloys that are precursors for two-component melt spinning (TCMS) processing.

3.
Materials (Basel) ; 13(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238366

ABSTRACT

Nanotechnology is a very attractive tool for tailoring the surface of an orthopedic implant to optimize its interaction with the biological environment. Nanostructured interfaces are promising, especially for orthopedic applications. They can not only improve osseointegration between the implant and the living bone but also may be used as drug delivery platforms. The nanoporous structure can be used as a drug carrier to the surrounding tissue, with the intention to accelerate tissue-implant integration as well as to reduce and treat bacterial infections occurring after implantation. Titanium oxide nanotubes are promising for such applications; however, their brittle nature could be a significantly limiting factor. In this work, we modified the topography of commercially used titanium foil by the anodization process and hydrothermal treatment. As a result, we obtained a crystalline nanoporous u-shaped structure (US) of anodized titanium oxide with improved resistance to scratch compared to TiO2 nanotubes. The US titanium substrate was successfully modified with hydroxyapatite coating and investigated for bioactivity. Results showed high bioactivity in simulated body fluid (SBF) after two weeks of incubation.

4.
Mater Sci Eng C Mater Biol Appl ; 51: 57-63, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25842108

ABSTRACT

Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions.


Subject(s)
Bone Substitutes/chemical synthesis , Coated Materials, Biocompatible/chemical synthesis , Crystallization/methods , Durapatite/chemical synthesis , Titanium/chemistry , Adsorption , Hardness , Heating/methods , Materials Testing , Water/chemistry
5.
Acta Bioeng Biomech ; 17(4): 49-58, 2015.
Article in English | MEDLINE | ID: mdl-26899910

ABSTRACT

The digital image correlation is used to estimate influence of deposited heamocompatible coatings (gold and titanium nitride) on mechanical response of ventricular assist device Religa Heart_Ext made of Bionate II (thermoplastic polycarbonate urethane) under working conditions by comparison of the coated Religa Heart_Ext with uncoated Religa Heart_Ext. The DIC is applied for experimental investigation of the strains and displacements distribution on external surface of the blood chamber of ventricular assist device during loading. The experiment was conducted in a hydraulic system with water at operating temperatures of 25 and 37 °C, as well as under static pressures: 80, 120, 180, 220 and 280 mmHg, and static underpressures: -25, -45, -75 mmHg. The subsequent images were taken after stabilization of pressure on a set level. The applied research method shows that the nano-coating of 30 nm in thickness significantly affects deformation of the blood chamber of Religa Heart_Ext in macro scale. The proposed composition of coatings increases strain on external surface of the ventricular assist device.


Subject(s)
Heart-Assist Devices , Coated Materials, Biocompatible , Finite Element Analysis , Gold , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Materials Testing , Prosthesis Design , Stress, Mechanical , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...